In a spring pendulum, in place of mass, a liquid is used. If liquid leaks out continuously, then the time period of the spring pendulum:

1. Decreases continuously
2. Increases continuously
3. First increases and then decreases
4. First decreases and then increases

Subtopic:  Spring mass system |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Equation of a simple harmonic motion is given by \(x= a\sin \omega t\). For which value of \(x\), kinetic energy is equal to the potential energy?
1. \(x = \pm a\)
2. \(x = \pm \frac{a}{2}\)
3. \(x = \pm \frac{a}{\sqrt{2}}\)
4. \(x = \pm \frac{\sqrt{3}a}{2}\)
Subtopic:  Energy of SHM |
 82%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The displacement \( x\) of a particle varies with time \(t\) as \(x = A sin\left (\frac{2\pi t}{T} +\frac{\pi}{3} \right)\)The time taken by the particle to reach from \(x = \frac{A}{2} \) to \(x = -\frac{A}{2} \) will be:

1. \(\frac{T}{2}\) 2. \(\frac{T}{3}\)
3. \(\frac{T}{12}\) 4. \(\frac{T}{6}\)

Subtopic:  Phasor Diagram |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Force on a particle \(F\) varies with time \(t\) as shown in the given graph. The displacement \(x\) vs time \(t\) graph corresponding to the force-time graph will be:
          

1. 2.
3. 4.
Subtopic:  Linear SHM |
 66%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A particle executes linear SHM between \(x=A.\) The time taken to go from \(0\) to \(A/2\) is \(T_1\) and to go from \(A/2\) to \(A\) is \(T_2\) then:
1. \(T_1<T_2\) 2. \(T_1>T_2\)
3. \(T_1=T_2\) 4. \(T_1= 2T_2\)
Subtopic:  Linear SHM |
 71%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Two simple pendulums of length \(1~\text{m}\) and \(16~\text{m}\) are in the same phase at the mean position at any instant. If \(T\) is the time period of the smaller pendulum, then the minimum time after which they will again be in the same phase will be:
1. \(\frac{3T}{2}\)
2. \(\frac{3T}{4}\)
3. \(\frac{2T}{3}\)
4. \(\frac{4T}{3}\)
Subtopic:  Angular SHM |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A particle executes SHM with a time period of \(4~\text{s}\). The time taken by the particle to go directly from its mean position to half of its amplitude will be:
1. \(\frac{1}{3}~\text{s}\)
2. \(1~\text{s}\)
3. \(\frac{1}{2}~\text{s}\)
4. \(2~\text{s}\)
Subtopic:  Linear SHM |
 75%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The graph between the velocity \((v)\) of a particle executing SHM and its displacement \((x)\) is shown in the figure. The time period of oscillation for this SHM will be:

      
1. \(\sqrt{\frac{\alpha}{\beta}}\)
2. \(2\pi\sqrt{\frac{\alpha}{\beta}}\)
3. \(2\pi\left(\frac{\beta}{\alpha}\right)\)
4. \(2\pi\left(\frac{\alpha}{\beta}\right)\)

Subtopic:  Simple Harmonic Motion |
 65%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A simple pendulum attached to the ceiling of a stationary lift has a time period of 1 s. The distance y covered by the lift moving downward varies with time as y = 3.75 t2, where y is in meters and t is in seconds. If g = 10 m/s2, then the time period of the pendulum will be:

1. 4 s 2. 6 s
3. 2 s 4. 12 s
Subtopic:  Types of Motion | Simple Harmonic Motion | Angular SHM |
 61%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The time period of the spring-mass system depends upon:
1. the gravity of the earth 2. the mass of the block
3. spring constant 4. both (2) & (3)
Subtopic:  Spring mass system |
 88%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch