In a spring pendulum, in place of mass, a liquid is used. If liquid leaks out continuously, then the time period of the spring pendulum:
1. | Decreases continuously |
2. | Increases continuously |
3. | First increases and then decreases |
4. | First decreases and then increases |
The displacement \( x\) of a particle varies with time \(t\) as \(x = A sin\left (\frac{2\pi t}{T} +\frac{\pi}{3} \right)\). The time taken by the particle to reach from \(x = \frac{A}{2} \) to \(x = -\frac{A}{2} \) will be:
1. | \(\frac{T}{2}\) | 2. | \(\frac{T}{3}\) |
3. | \(\frac{T}{12}\) | 4. | \(\frac{T}{6}\) |
Force on a particle \(F\) varies with time \(t\) as shown in the given graph. The displacement \(x\) vs time \(t\) graph corresponding to the force-time graph will be:
1. | 2. | ||
3. | 4. |
1. | \(T_1<T_2\) | 2. | \(T_1>T_2\) |
3. | \(T_1=T_2\) |
4. | \(T_1= 2T_2\) |
The graph between the velocity \((v)\) of a particle executing SHM and its displacement \((x)\) is shown in the figure. The time period of oscillation for this SHM will be:
1. \(\sqrt{\frac{\alpha}{\beta}}\)
2. \(2\pi\sqrt{\frac{\alpha}{\beta}}\)
3. \(2\pi\left(\frac{\beta}{\alpha}\right)\)
4. \(2\pi\left(\frac{\alpha}{\beta}\right)\)
A simple pendulum attached to the ceiling of a stationary lift has a time period of 1 s. The distance y covered by the lift moving downward varies with time as y = 3.75 , where y is in meters and t is in seconds. If g = 10 , then the time period of the pendulum will be:
1. | 4 s | 2. | 6 s |
3. | 2 s | 4. | 12 s |
1. | the gravity of the earth | 2. | the mass of the block |
3. | spring constant | 4. | both (2) & (3) |