Two pendulums suspended from the same point have lengths of \(2\) m and \(0.5\) m. If they are displaced slightly and released, then they will be in the same phase when the small pendulum has completed:
1. \(2\) oscillations
2. \(4\) oscillations
3. \(3\) oscillations
4. \(5\) oscillations

Subtopic:  Simple Harmonic Motion |
 66%
From NCERT
AIPMT - 1998
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

If the time of mean position from amplitude (extreme) position is 6 seconds, then the frequency of SHM will be:

1. \(0.01\) Hz 2. \(0.02\) Hz
3. \(0.03\) Hz 4. \(0.04\) Hz
Subtopic:  Simple Harmonic Motion |
 68%
From NCERT
AIPMT - 1998
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A particle executing simple harmonic motion of amplitude \(5~\text{cm}\) has a maximum speed of \(31.4~\text{cm/s}.\) The frequency of its oscillation will be:
1. \(1~\text{Hz}\)
2. \(3~\text{Hz}\)
3. \(2~\text{Hz}\)
4. \(4~\text{Hz}\)

Subtopic:  Linear SHM |
 86%
From NCERT
AIPMT - 2005
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

Two spherical bobs of masses \(M_A\) and \(M_B\) are hung vertically from two strings of length \(l_A\) and \(l_B\) respectively. If they are executing SHM with frequency as per the relation \(f_A=2f_B,\) Then: 
1. lA=lB4

2. lA=4lB

3. lA=2lB & MA=2MB

4. lA=lB2 & MA=MB2

Subtopic:  Angular SHM |
 72%
From NCERT
AIPMT - 2000
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The circular motion of a particle with constant speed is:

1. Periodic and simple harmonic 2. Simple harmonic but not periodic
3. Neither periodic nor simple harmonic 4. Periodic but not simple harmonic
Subtopic:  Types of Motion |
 79%
From NCERT
AIPMT - 2005
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The frequency of a spring is \(n\) after suspending mass \(M.\) Now, after mass \(4M\) mass is suspended from the spring, the frequency will be:
 

1. \(2n\) 2. \(n/2\)
3. \(n\) 4. none of the above

Subtopic:  Spring mass system |
 81%
From NCERT
AIPMT - 1998
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

Which one of the following statements is true for the speed 'v' and the acceleration 'a' of a particle executing simple harmonic motion?

1. The value of a is zero whatever may be the value of 'v'.
2. When 'v' is zero, a is zero.
3. When 'v' is maximum, a is zero.
4. When 'v' is maximum, a is maximum. 
Subtopic:  Simple Harmonic Motion |
 86%
From NCERT
AIPMT - 2004
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Two springs of spring constants \(k_1\) and \(k_2\) are joined in series. The effective spring constant of the combination is given by:
1. \(\frac{k_1+k_2}{2}\)
2. \(k_1+k_2\)
3. \(\frac{k_1k_2}{k_1+k_2}\)
4. \(\sqrt{k_1k_2}{}\)

Subtopic:  Combination of Springs |
 93%
From NCERT
AIPMT - 2004
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A spring elongates by a length 'L' when a mass 'M' is suspended to it. Now a tiny mass 'm' is attached to the mass 'M' and then released. The new time period of oscillation will be:

1.  \(2 \pi \sqrt{\frac{\left(\right. M   +   m \left.\right) l}{Mg}}\)

2. \(2 \pi \sqrt{\frac{ml}{Mg}}\)

3. \(2 \pi \sqrt{L   /   g}\)

4. \(2 \pi \sqrt{\frac{Ml}{\left(\right. m   +   M \left.\right) g}}\)

Subtopic:  Spring mass system |
 59%
From NCERT
AIPMT - 1999
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

The frequency of a simple pendulum in a free-falling lift will be:
1. zero
2. infinite
3. can't say
4. finite

Subtopic:  Angular SHM |
 67%
From NCERT
AIPMT - 1999
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh