1. | \(2~\text{A}\) | 2. | \(0.25~\text{A}\) |
3. | \(1.5~\text{A}\) | 4. | \(1~\text{A}\) |
The current in an inductor of self-inductance \(4~\text{H}\) changes from \(4~ \text{A}\) to \(2~\text{A}\) in \(1~ \text s\). The emf induced in the coil is:
1. \(-2~\text{V}\)
2. \(2~\text{V}\)
3. \(-4~\text{V}\)
4. \(8~\text{V}\)
1. | \(\left[M^2LT^{-2}A^{-2}\right]\) | 2. | \(\left[MLT^{-2}A^{2}\right]\) |
3. | \(\left[M^{2}L^{2}T^{-2}A^{2}\right]\) | 4. | \(\left[ML^{2}T^{-2}A^{-2}\right]\) |
1. | \(10~\text{J}\) | 2. | \(2.5~\text{J}\) |
3. | \(20~\text{J}\) | 4. | \(5~\text{J}\) |
The magnetic flux linked to a circular coil of radius \(R\) is given by:
\(\phi=2t^3+4t^2+2t+5\) Wb.
What is the magnitude of the induced EMF in the coil at \(t=5\) s?
1. \(108\) V
2. \(197\) V
3. \(150\) V
4. \(192\) V
1. | \(\dfrac{R^2_1}{R_2}\) | 2. | \(\dfrac{R^2_2}{R_1}\) |
3. | \(\dfrac{R_1}{R_2}\) | 4. | \(\dfrac{R_2}{R_1}\) |
For a coil having \(L=2~\text{mH},\) the current flow through it is \(I=t^2e^{-t}.\) The time at which emf becomes zero is:
1. \(2\) s
2. \(1\) s
3. \(4\) s
4. \(3\) s