The current in an inductor of self-inductance \(4~\text{H}\) changes from \(4~ \text{A}\) to \(2~\text{A}\) in \(1~ \text s\). The emf induced in the coil is:
1. \(-2~\text{V}\)
2. \(2~\text{V}\)
3. \(-4~\text{V}\)
4. \(8~\text{V}\)
The dimensions of mutual inductance \((M)\) are:
1. \(\left[M^2LT^{-2}A^{-2}\right]\)
2. \(\left[MLT^{-2}A^{2}\right]\)
3. \(\left[M^{2}L^{2}T^{-2}A^{2}\right]\)
4. \(\left[ML^{2}T^{-2}A^{-2}\right]\)
1. | \(0\) | 2. | \(2\) weber |
3. | \(0.5\) weber | 4. | \(1\) weber |
Two conducting circular loops of radii \(R_1\)\(R_2\) are placed in the same plane with their centres coinciding. If \(R_1>>R_2\) the mutual inductance \(M\) between them will be directly proportional to:
1. | \(\dfrac{R^2_1}{R_2}\) | 2. | \(\dfrac{R^2_2}{R_1}\) |
3. | \(\dfrac{R_1}{R_2}\) | 4. | \(\dfrac{R_2}{R_1}\) |
For a coil having \(L=2~\text{mH},\) the current flow through it is \(I=t^2e^{-t}.\) The time at which emf becomes zero is:
1. \(2\) s
2. \(1\) s
3. \(4\) s
4. \(3\) s