Two conducting slabs of heat conductivity \(K_{1} ~\text{and}~K_{2}\) are joined as shown in figure. If the temperature at the ends of the slabs are \(\theta_{1}~\text{and}~\theta_{2} \ (\theta_{1} > \theta_{2} ), \) then the final temperature \( \left(\theta\right)_{m} \) of the junction will be:
1. | \(\frac{K_{1} \theta_{1} + K_{2} \theta_{2}}{K_{1} + K_{2}}\) | 2. | \(\frac{K_{1} \theta_{2} + K_{2} \theta_{1}}{K_{1} + K_{2}}\) |
3. | \(\frac{K_{1} \theta_{2} + K_{2} \theta_{1}}{K_{1} - K_{2}}\) | 4. | None |
Which of the following is closest to an ideal black body?
1. | Black lamp |
2. | Cavity maintained at a constant temperature |
3. | Platinum black |
4. | A lump of charcoal heated to high temperature |
A cylindrical rod has temperatures at its ends. The rate of flow of heat is cal/sec. If all the linear dimensions are doubled while keeping the temperature constant, then the rate of flow of heat will be:
1.
2.
3.
4.
Consider a compound slab consisting of two different materials having equal thicknesses and thermal conductivities K and 2K, respectively. The equivalent thermal conductivity of the slab will be:
1. | 2. | ||
3. | 4. |
A slab of stone with an area \(0.36~\text{m}^{2}\) and thickness of \(0.1~\text{m}\) is exposed on the lower surface to steam at \(100^\circ\text{C}.\) A block of ice at \(0^{\circ}\text{C}\) rests on the upper surface of the slab. In one hour \(4.8~\text{kg}\) of ice is melted. The thermal conductivity of the slab will be:
(Given latent heat of fusion of ice \(= 3.36\times10^{5}~\text{JKg}^{-1}\))
1. \(1.29~\text{J/m/s/}^{\circ}\text{C}\)
2. \(2.05~\text{J/m/s/}^{\circ}\text{C}\)
3. \(1.02~\text{J/m/s/}^{\circ}\text{C}\)
4. \(1.24~\text{J/m/s/}^{\circ}\text{C}\)
A piece of iron is heated in a flame. If it becomes dull red first, then becomes reddish yellow, and finally turns to white hot, the correct explanation for the above observation is possible by using:
1. | Stefan's law | 2. | Wien's displacement law |
3. | Kirchhoff's law | 4. | Newton's law of cooling |
The diagram shows a bimetallic strip used as a thermostat in a circuit. Copper expands more than Invar for the same temperature rise.
What will be switched on when the bimetallic strip becomes hot?
1. | bell only | 2. | lamp and bell only |
3. | motor and bell only | 4. | lamp, bell, and motor |
In an experiment on the specific heat of a metal, a \(0.20~\text{kg}\) block of the metal at \(150^{\circ}\text{C}\) is dropped in a copper calorimeter (of water equivalent of \(0.025~\text{kg}\)) containing \(150~\text{cm}^{3}\) of water at \(27^{\circ}\text{C}.\) The final temperature is \(40^{\circ}\text{C}.\) The specific heat of the metal will be:
(the heat losses to the surroundings are negligible)
1. \(0 . 40 ~ \text{Jg}^{- 1} \text{K}^{- 1}\)
2. \(0 . 43 ~ \text{Jg}^{- 1} \text{K}^{- 1}\)
3. \(0 . 54 ~ \text{Jg}^{- 1} \text{K}^{- 1}\)
4. \(0 . 61 ~ \text{Jg}^{- 1} \text{K}^{- 1}\)