A slab of stone with an area \(0.36~\text{m}^{2}\) and thickness of \(0.1~\text{m}\) is exposed on the lower surface to steam at \(100^\circ\text{C}.\) A block of ice at \(0^{\circ}\text{C}\) rests on the upper surface of the slab. In one hour \(4.8~\text{kg}\) of ice is melted. The thermal conductivity of the slab will be:
(Given latent heat of fusion of ice \(= 3.36\times10^{5}~\text{JKg}^{-1}\))
1. \(1.29~\text{J/m/s/}^{\circ}\text{C}\)
2. \(2.05~\text{J/m/s/}^{\circ}\text{C}\)
3. \(1.02~\text{J/m/s/}^{\circ}\text{C}\)
4. \(1.24~\text{J/m/s/}^{\circ}\text{C}\)
A black body at \(1227^\circ\text{C}\) emits radiations with maximum intensity at a wavelength of \(5000~\mathring {A}\). If the temperature of the body is increased by \(1000^\circ\text{C},\) the maximum intensity will be observed at:
1. \(4000~\mathring {A}\)
2. \(5000~\mathring {A}\)
3. \(6000~\mathring {A}\)
4. \(3000~\mathring {A}\)
A black body is at \(727^\circ\text{C}.\) The rate at which it emits energy is proportional to:
1. | \((727)^2\) | 2. | \((1000)^4\) |
3. | \((1000)^2\) | 4. | \((727)^4\) |
Assuming the sun to have a spherical outer surface of radius \(r,\) radiating like a black body at temperature \(t^\circ \text{C},\) the power received by a unit surface of the earth (normal to the incident rays) at a distance \(R\) from the centre of the sun will be:
(where \(\sigma\) is Stefan's constant)
1. | \(\dfrac{4\pi r^2\sigma t^4}{R^2}\) | 2. | \(\dfrac{r^2\sigma(t+273)^4}{4\pi R^2}\) |
3. | \(\dfrac{16\pi^2r^2\sigma t^4}{R^2}\) | 4. | \(\dfrac{r^2\sigma(t+273)^4}{R^2}\) |
On a new scale of temperature, which is linear and called the \(\text{W}\) scale, the freezing and boiling points of water are \(39^\circ ~\text{W}\) and \(239^\circ ~\text{W}\) respectively. What will be the temperature on the new scale corresponding to a temperature of \(39^\circ ~\text{C}\) on the Celsius scale?
1. \(78^\circ ~\text{W}\)
2. \(117^\circ ~\text{W}\)
3. \(200^\circ ~\text{W}\)
4. \(139^\circ ~\text{W}\)
The two ends of a rod of length L and a uniform cross-sectional area A are kept at two temperatures T1 and T2 (T1> T2). The rate of heat transfer through the rod in a steady state is given by:
1.
2.
3.
4.
A black body at \(227^{\circ}~\mathrm{C}\) radiates heat at the rate of \(7~ \mathrm{cal-cm^{-2}s^{-1}}\). At a temperature of \(727^{\circ}~\mathrm{C}\), the rate of heat radiated in the same units will be:
1. \(60\)
2. \(50\)
3. \(112\)
4. \(80\)