Two particles having mass \(M\) and \(m\) are moving in a circular path having radius \(R\) & \(r\) respectively. If their time periods are the same, then the ratio of angular velocities will be: 
1. \(\frac{r}{R}\)
2. \(\frac{R}{r}\)
3. \(1\)
4. \(\sqrt{\frac{R}{r}}\)

Subtopic:  Circular Motion |
 78%
From NCERT
AIPMT - 2001
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A particle moves along a circle of radius \({{20}\over{\pi}} m\) with constant tangential acceleration. If the velocity of the particle is 80 m/s at the end of the second revolution after motion has begun, the tangential acceleration is:

1. 40 ms–2

2. 640π ms–2

3. 160π ms–2

4. 40π ms–2

Subtopic:  Circular Motion |
 56%
From NCERT
AIPMT - 2003
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A stone tied to the end of a 1 m long string is whirled in a horizontal circle at a constant speed. If the stone makes 22 revolutions in 44 seconds, what is the magnitude and direction of acceleration of the stone?

1. \(\pi^2 \mathrm{~ms}^{-2} \) and direction along the tangent to the circle.
2. \(\pi^2 \mathrm{~ms}^{-2} \)  and direction along the radius towards the centre.
3. \(\frac{\pi^2}{4} \mathrm{~ms}^{-2}\) and direction along the radius towards the centre.
4. \(\pi^2 \mathrm{~ms}^{-2} \) and direction along the radius away from the centre.

Subtopic:  Circular Motion |
 76%
From NCERT
AIPMT - 2005
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement