The potential energy of a long spring when stretched by \(2\) cm is \(U\). If the spring is stretched by \(8\) cm, potential energy stored in it will be: 
1. \(16U\) 2. \(2U\)
3. \(4U\) 4. \(8U\)
Subtopic:  Elastic Potential Energy |
 73%
From NCERT
NEET - 2023
Please attempt this question first.
Hints
Please attempt this question first.

A block of mass \(m\) is moving with initial velocity \(u\) towards a stationary spring of stiffness constant \(k\) attached to the wall as shown in the figure. Maximum compression of the spring is:
(The friction between the block and the surface is negligible).
                 

1. \(u\sqrt{\frac{m}{k}}\) 2. \(4u\sqrt{\frac{m}{k}}\)
3. \(2u\sqrt{\frac{m}{k}}\) 4. \(\frac12u\sqrt{\frac{k}{m}}\)
Subtopic:  Elastic Potential Energy |
 79%
From NCERT
NEET - 2022
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Two similar springs \(P\) and \(Q\) have spring constants \(k_P\) and \(k_Q\), such that \(k_P>k_Q\). They are stretched, first by the same amount (case a), then by the same force (case b). The work done by the springs \(W_P\) and \(W_Q\) are related as, in case (a) and case (b), respectively:

1. \(W_P=W_Q;~W_P>W_Q\)
2. \(W_P=W_Q;~W_P=W_Q\)
3. \(W_P>W_Q;~W_P<W_Q\)
4. \(W_P<W_Q;~W_P<W_Q\)
Subtopic:  Elastic Potential Energy |
 73%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

A block of mass \(M\) is attached to the lower end of a vertical spring. The spring is hung from a ceiling and has a force constant value of \(k\). The mass is released from rest with the spring initially unstretched. The maximum extension produced in the length of the spring will be:
1. \(Mg/k\)
2. \(2Mg/k\)
3. \(4Mg/k\)
4. \(Mg/2k\)
Subtopic:  Elastic Potential Energy |
 69%
From NCERT
AIPMT - 2009
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A vertical spring with a force constant \(k\) is fixed on a table. A ball of mass \(m\) at a height \(h\) above the free upper end of the spring falls vertically on the spring so that the spring is compressed by a distance \(d\). The net work done in the process is:
1. \(mg(h+d)+\frac{1}{2}kd^2\)
2. \(mg(h+d)-\frac{1}{2}kd^2\)
3. \(mg(h-d)-\frac{1}{2}kd^2\)
4. \(mg(h-d)+\frac{1}{2}kd^2\)

Subtopic:  Elastic Potential Energy |
 64%
From NCERT
AIPMT - 2007
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The potential energy of a long spring when stretched by \(2\) cm is \(U\). If the spring is stretched by \(8\) cm, the potential energy stored in it is:
1. \(4U\)
2. \(8U\)
3. \(16U\)
4. \(U/4\)

Subtopic:  Elastic Potential Energy |
 78%
From NCERT
AIPMT - 2006
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

A mass of \(0.5\) kg moving with a speed of \(1.5\) m/s on a horizontal smooth surface, collides with a nearly weightless spring with force constant \(k=50\) N/m. The maximum compression of the spring would be:
           
1. \(0.12\) m
2. \(1.5\) m
3. \(0.5\) m
4. \(0.15\) m

Subtopic:  Elastic Potential Energy |
 80%
From NCERT
AIPMT - 2004
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

When a long spring is stretched by \(2\) cm, its potential energy is \(U\). If the spring is stretched by \(10\) cm, the potential energy stored in it will be:
1. \(U/5\)
2. \(5U\)
3. \(10U\)
4. \(25U\)

Subtopic:  Elastic Potential Energy |
 87%
From NCERT
AIPMT - 2003
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Two springs A and B having spring constant KA and KB  (KA = 2KB) are stretched by applying a force of equal magnitude. If the energy stored in spring A is E, then the energy stored in B will be:

1.  2E

2.  E4

3. E2

4.  4E

Subtopic:  Elastic Potential Energy |
 68%
From NCERT
AIPMT - 2001
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

If two springs, A and B (KA = 2 KB), are stretched by the same suspended weights, then the ratio of work done in stretching is equal to:
1.  1 : 2
2.  2 : 1
3.  1 : 1
4.  1 : 4

Subtopic:  Elastic Potential Energy |
 63%
From NCERT
AIPMT - 1999
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh