Choose the incorrect alternative:
1. | Newton's first law is the law of inertia. |
2. | Newton's first law states that if the net force on a system is zero, the acceleration of any particle of the system is not zero. |
3. | Action and reaction act simultaneously. |
4. | The area under the force-time graph is equal to the change in momentum. |
The force \(F\) acting on a particle of mass \(m\) is indicated by the force-time graph shown below. The change in momentum of the particle over the time interval from \(0\) to \(8\) s is:
1. \(24~\text{N-s}\)
2. \(20~\text{N-s}\)
3. \(12~\text{N-s}\)
4. \(6~\text{N-s}\)
On the application of an impulsive force, a sphere of mass \(500\) grams starts moving with an acceleration of \(10\) m/s2. The force acts on it for \(0.5\) s. The gain in the momentum of the sphere will be:
1. \(2.5\) kg-m/s
2. \(5\) kg-m/s
3. \(0.05\) kg-m/s
4. \(25\) kg-m/s
A rigid ball of mass \(M\) strikes a rigid wall at \(60^{\circ}\) and gets reflected without loss of speed, as shown in the figure. The value of the impulse imparted by the wall on the ball will be:
1. | \(Mv\) | 2. | \(2Mv\) |
3. | \(\dfrac{Mv}{2}\) | 4. | \(\dfrac{Mv}{3}\) |
The variation of momentum with the time of one of the bodies in a two-body collision is shown in fig. The instantaneous force is the maximum corresponding to the point:
1. \(P\)
2. \(Q\)
3. \(R\)
4. \(S\)
A particle moves in the \(XY\text-\)plane under the action of a force \(F\) such that the components of its linear momentum \(p\) at any time \(t\) are \(p_x = 2 \cos t\), \(p_y = 2 \sin t\). The angle between \(F\) and \(p\) at time \(t\) will be:
1. | \(90^{\circ}\) | 2. | \(0^{\circ}\) |
3. | \(180^{\circ}\) | 4. | \(30^{\circ}\) |