The two long, parallel wires shown in the diagram carry equal and opposite currents \(i\). The currents change linearly with time: \(\dfrac{di} {dt}\) = a constant = \(K\). The small circuit is situated midway between the wires and has an area \(A\). The emf induced in the small circuit is: 
1. zero 2. \(\dfrac{\mu_{0} A K}{2 \pi l}\)
3. \(\dfrac{\mu_{0} A K}{ \pi l}\) 4. \(\dfrac{2 \mu_{0} A K}{\pi l}\)
Subtopic:  Magnetic Flux |
Level 3: 35%-60%

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
A square wire loop of resistance \(0.5\) \(\Omega\)/m, having a side \(10\) cm and made of \(100\) turns is suddenly flipped in a magnetic field \(B,\) which is perpendicular to the plane of the loop. A charge of \(2\times10^{-4} \) C passes through the loop. The magnetic field \(B\) has the magnitude of: 
1. \(2\times10^{-6} \) T
2. \(4\times10^{-6} \) T
3. \(2\times10^{-3} \) T
4. \(4\times10^{-3} \) T
Subtopic:  Magnetic Flux |
Level 3: 35%-60%

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


What is the SI unit of \({\large\frac{\text{(magnetic flux)}}{\text{(electric resistance)}}}?\)
1. volt 2. ampere
3. coulomb 4. volt-second
Subtopic:  Magnetic Flux |
 60%
Level 2: 60%+

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


advertisementadvertisement