premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

A car is moving with velocity v. It stops after applying breaks at a distance of 20 m. If the velocity of the car is doubled, then how much distance it will cover (travel) after applying breaks?
1.  40 m
2.  80 m
3.  160 m
4.  320 m

Subtopic:  Uniformly Accelerated Motion |
 82%
Level 1: 80%+
AIPMT - 1998
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

A body starts falling from height \(h\) and if it travels a distance of \(\frac{h}{2}\) during the last second of motion, then the time of flight is (in seconds):
1. \(\sqrt{2}-1\)
2. \(2+\sqrt{2}\)
3. \(\sqrt{2}+\sqrt{3}\)
4. \(\sqrt{3}+2\)

Subtopic:  Uniformly Accelerated Motion |
 51%
Level 3: 35%-60%
AIPMT - 1999
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

For a particle, displacement time relation is given by; t = x + 3 . Its displacement, when its velocity is zero will be:
1. \(2\) m
2. \(4\) m
3. \(0\) m
4. none of the above

Subtopic:  Instantaneous Speed & Instantaneous Velocity |
 82%
Level 1: 80%+
AIPMT - 1999
Hints
Links

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

A particle starts from rest with constant acceleration. The ratio of space-average velocity to the time-average velocity is:
where time-average velocity and space-average velocity, respectively, are defined as follows: 
\(<v>_{time}\) \(=\) \(\frac{\int v d t}{\int d t}\)
\(<v>_{space}\) \(=\) \(\frac{\int v d s}{\int d s}\)

1. \(\frac{1}{2}\) 2. \(\frac{3}{4}\)
3. \(\frac{4}{3}\) 4. \(\frac{3}{2}\)
Subtopic:  Average Speed & Average Velocity |
Level 4: Below 35%
AIPMT - 1999
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The motion of a particle is given by the equation \(S = \left(3 t^{3} + 7 t^{2} + 14 t + 8 \right) \text{m} ,\) The value of the acceleration of the particle at \(t=1~\text{s}\) is:

1. \(10\) m/s2 2. \(32\) m/s2
3. \(23\) m/s2 4. \(16\) m/s2
Subtopic:  Acceleration |
 94%
Level 1: 80%+
AIPMT - 2000
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

A particle is thrown vertically upward. Its velocity at half its height is \(10\) m/s. Then the maximum height attained by it is: (Assume, \(g=\) \(10\) m/s2
1. \(8\) m
2. \(20\) m
3. \(10\) m
4. \(16\) m

Subtopic:  Uniformly Accelerated Motion |
 76%
Level 2: 60%+
AIPMT - 2001
Hints
Links

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

If a ball is thrown vertically upwards with speed \(u\), the distance covered during the last \(t\) seconds of its ascent is:
1. \(ut\)
2. \(\frac{1}{2}gt^2\)
3. \(ut-\frac{1}{2}gt^2\)
4. \((u+gt)t\)

Subtopic:  Uniformly Accelerated Motion |
 67%
Level 2: 60%+
AIPMT - 2003
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

A man throws some balls with the same speed vertically upwards one after the other at an interval of \(2\) seconds. What should be the speed of the throw so that more than two balls are in the sky at any time? (Given \(g = 9.8\) m/s2)

1. More than \(19.6\) m/s
2. At least \(9.8\) m/s
3. Any speed less than \(19.6\) m/s
4. Only with a speed of \(19.6\) m/s
Subtopic:  Uniformly Accelerated Motion |
 68%
Level 2: 60%+
AIPMT - 2003
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

A ball of mass 2 kg and another of mass 4 kg are dropped together from a 60 feet tall building. After a fall of 30 feet each towards the earth, their respective kinetic energies will be in the ratio of:

1. 1: 4

2. 1: 2

3. 1: 2

4. 2 :1

Subtopic:  Uniformly Accelerated Motion |
 84%
Level 1: 80%+
AIPMT - 2004
Hints
Links

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The displacement \(x\) of a particle varies with time \(t\) as \(x = ae^{-\alpha t}+ be^{\beta t}\), where \(a,\) \(b,\) \(\alpha,\) and \(\beta\) are positive constants. The velocity of the particle will:

1. be independent of \(\alpha\) and \(\beta.\)
2. go on increasing with time.
3. drop to zero when \(\alpha=\beta.\)
4. go on decreasing with time.
Subtopic:  Instantaneous Speed & Instantaneous Velocity |
 54%
Level 3: 35%-60%
AIPMT - 2005
Hints
Links