premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom is:
1. \(1:1\)
2. \(1:-1\)
3. \(2:-1\)
4. \(1:-2\)

Subtopic:  Bohr's Model of Atom |
 82%
Level 1: 80%+
NEET - 2018
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The ratio of wavelengths of the last line of the Balmer series and the last line of the Lyman series is:
1. \(1\)
2. \(4\)
3. \(0.5\)
4. \(2\)

Subtopic:  Spectral Series |
 78%
Level 2: 60%+
NEET - 2017
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
If an electron in a hydrogen atom jumps from the \(3^{\text{rd}}\) orbit to the \(2^{\text{nd}}\) orbit, it emits a photon of wavelength \(\lambda\). When it jumps from the \(4^{\text{th}}\) orbit to the \(3^{\text{rd}}\) orbit, the corresponding wavelength of the photon will be:
1. \(\frac{16}{25}\lambda\) 2. \(\frac{9}{16}\lambda\)
3. \(\frac{20}{7}\lambda\) 4. \(\frac{20}{13}\lambda\)
Subtopic:  Bohr's Model of Atom |
 80%
Level 1: 80%+
NEET - 2016
Hints
Links

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
Given that the value of the Rydberg constant is \(10^{7}~\text{m}^{-1},\) what will be the wave number of the last line of the Balmer series in the hydrogen spectrum?
1. \(0.5 \times 10^{7}~\text{m}^{-1}\)
2. \(0.25 \times 10^{7} ~\text{m}^{-1}\)
3. \(2.5 \times 10^{7}~\text{m}^{-1}\)
4. \(0.025 \times 10^{4} ~\text{m}^{-1}\)

Subtopic:  Spectral Series |
 87%
Level 1: 80%+
NEET - 2016
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
When an \(\alpha\text-\)particle of mass \(m\) moving with velocity \(v\) bombards on a heavy nucleus of charge \(Ze\), its distance of closest approach from the nucleus depends on \(m\) as:
1. \(\frac{1}{\sqrt{m}}\)
2. \(\frac{1}{m^{2}}\)
3. \(m\)
4. \( \frac{1}{m}\)
Subtopic:  Various Atomic Models |
 76%
Level 2: 60%+
NEET - 2016
Hints
Links