The value of Ecell in the reaction below will be:
\(\small{Pt(s)|Br^{-}(0.010 \ M)|Br_{2}(l) \ ||H^{+}(0.030 \ M)|H_{2}(g)(1 \ bar)|Pt(s)}\)
\(E_{Br^{-}/Br_{2}}^{o} \ = \ -1.09 \ V\)
1. +1.298 V
2. –1.398 V
3. –1.298 V
4. –1.198 V
The value of ∆G° in the reaction below would be:
\(\small{\mathrm{Zn}(\mathrm{s})+\mathrm{Ag}_2 \mathrm{O}(\mathrm{s})+\mathrm{H}_2 \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Zn}^{+2}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{OH}^{-}(\mathrm{aq})}\)
Given: \(E_{cell}^{\circ} = 1.04V\)
1. –2.13 kJ
2. –21.3 kJ
3. –201 kJ
4. –31.12 kJ
The mass of nickel deposited by electrolysis of a solution of using a current of 5 amperes for 20 min is:
(Atomic mass of Nickle is 58.7u)
1. 2.42 g
2. 1.82 g
3. 3.93 g
4. 6.42 g
The molar conductance of NaCl, HCI, and CH3COONa at infinite dilution are 126.45, 426.16, and 91.0 S cm mol–1 respectively. The molar conductance of CH3COOH at infinite dilution will be:
1. 698.28 S cm2 mol–1
2. 540.48 S cm2 mol–1
3. 201.28 S cm2 mol–1
4. 390.71 S cm2 mol–1
The molar conductivity of 0.007 M acetic acid is 20 S cm2 mol–1. The dissociation constant of acetic acid is :
(\(\mathrm{\Lambda_{H^{+}}^{o} \ = \ 350 \ S \ cm^{2} \ mol^{-1} }\))
(\(\mathrm{\mathrm{\Lambda_{CH_{3}COO^{-}}^{o} \ = \ 50 \ S \ cm^{2} \ mol^{-1} }}\))
1. mol L–1
2. mol L–1
3. mol L–1
4. mol L–1
Mg(s) + 2Ag+(0.0001M) → Mg2+(0.130M) + 2Ag(s)
If EƟ(cell) for the above mentioned cell is 3.17 V, then E(cell) value will be-
(log 13=1.1)
1. 2.87 V
2. 3.08 V
3. 2.96 V
4. 2.68 V
The equilibrium constant value for the given reaction is:
Cu(s) + 2Ag+(aq) → Cu2+(aq) + 2Ag(s)
(Given: EƟ(cell) = 0.46 V)
1. 3.92 × 1014
2. 3.92 × 1015
3. 3.92 × 1016
4. 3.92 × 1017
The standard electrode potential for Daniell cell is 1.1V. The standard Gibbs energy for the given reaction is-
Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s)
(Given: F = 96487 C mol–1)
1. 312.27 kJ mol–1
2. 212.27 kJ mol–1
3. – 312.27 kJ mol–1
4. – 212.27 kJ mol–1
Resistance of a conductivity cell filled with 0.1 mol L–1 KCl solution is 100 Ω. If the resistance of the same cell when filled with 0.02 mol L–1 KCl solution is 520 Ω. The conductivity of 0.1 mol L–1 KCl solution is 1.29 S/m. The molar conductivity of 0.02 mol L–1 KCl solution is-
1. 134 S cm2 mol–1
2. 124 S cm2 mol–1
3. 144 S cm2 mol–1
4. 154 S cm2 mol–1
Consider the following data:
Λ°m(Ca2+) = 119.0 S cm2mol–1
Λ°m(Cl-) = 76.3 S cm2mol–1
Λ°m(Mg2+) = 106.0 S cm2mol–1
Λ°m(\(SO_{4}^{2-}\)) = 160.0 S cm2mol–1
The correct statement among the following is-
1. | For CaCl2 Λ°m is 271.6 S cm2 mol–1 and for MgSO4 Λ°m is 266 S cm2 mol–1. |
2. | For CaCl2 Λ°m is 195.3 S cm2 mol–1 and for MgSO4 Λ°m is 266 S cm2 mol–1. |
3. | For CaCl2 Λ°m is 271.6 S cm2 mol–1 and for MgSO4 Λ°m is 133 S cm2 mol–1. |
4. | For CaCl2 Λ°m is 135.8 S cm2 mol–1 and for MgSO4 Λ°m is 133 S cm2 mol–1. |