Statement I: | The gravitational force exerted by the Sun on the Earth is reduced when the Moon is between the Earth and the Sun. |
Statement II: | The gravitational force exerted by the Sun on the Earth is reduced when the Moon is opposite to the Sun, relative to the Earth. |
1. | Statement I is incorrect and Statement II is correct. |
2. | Both Statement I and Statement II are correct. |
3. | Both Statement I and Statement II are incorrect. |
4. | Statement I is correct and Statement II is incorrect. |
Assertion (A): | The earth is slowing down and as a result, the moon is coming nearer to it. |
Reason (R): | The angular momentum of the earth-moon system is not conserved. |
1. | Both (A) and (R) are true and (R) is the correct explanation of (A). |
2. | Both (A) and (R) are true but (R) is not the correct explanation of (A). |
3. | (A) is true but (R) is false. |
4. | Both (A) and (R) are false. |
Assertion (A): | Though the gravitational force between two particles is central, the force between two finite rigid bodies is not necessarily along the line joining their centre of mass. |
Reason (R): | A spherical shell doesn't shield other bodies outside it from exerting gravitational forces on a particle inside. |
1. | Both (A) and (R) are true and (R) is the correct explanation of (A). |
2. | Both (A) and (R) are true but (R) is not the correct explanation of (A). |
3. | (A) is true but (R) is false. |
4. | Both (A) and (R) are false. |
Statement I: | The gravitational force acting on a particle depends on the electric charge of the particle. |
Statement II: | The gravitational force on an extended body can be calculated by assuming the body to be a particle 'concentrated' at its centre of mass and applying Newton's law of gravitation. |
1. | Statement I is incorrect and Statement II is correct. |
2. | Both Statement I and Statement II are correct. |
3. | Both Statement I and Statement II are incorrect. |
4. | Statement I is correct and Statement II is incorrect. |