The equilibrium constant Kc expression for the above mentioned reaction is:
1. | \(\mathrm{K_{C} = \dfrac{\left[IF_{5}\right]^{2}}{\left[F_{2}\right]^{5}}}\) | 2. | \(\mathrm{K_{C} = \dfrac{\left[IF_{5}\right]^{2}}{\left[F_{2}\right]^{5} \left[I_{2}\right]}}\) |
3. | \(\mathrm{K_{C} = \dfrac{\left[F_{2}\right]^{5} \left[I_{2}\right]}{\left[IF_{2}\right]^{2}}}\) | 4. | \(\mathrm{K_{C} = \dfrac{\left[F_{2}\right]^{5}}{\left[IF_{5}\right]^{2}}}\) |
are the respective ionisation constants for the following reactions.
\(\mathrm{H}_2 \mathrm{~S} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HS}^{-}\)
\(\mathrm{HS}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{S}^{2-}\)
\(\mathrm{H}_2 \mathrm{~S} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{S}^{2-}\)
The correct relationship between is:
1. \(\mathrm{K}_{\mathrm{a}_3}=\mathrm{K}_{\mathrm{a}_1} \times \mathrm{K}_{\mathrm{a}_2} \)
2. \(\mathrm{K}_{\mathrm{a}_3}=\mathrm{K}_{\mathrm{a}_1}+\mathrm{K}_{\mathrm{a}_2} \)
3. \(K_{a_3}=K_{a_1}-K_{a_2} \)
4. \(\mathrm{K}_{\mathrm{a}_3}=\mathrm{K}_{\mathrm{a}_1} / \mathrm{K}_{\mathrm{a}_2}\)
Reaction quotient for the reaction, is given by , .The reaction will proceed from right to left if Kc value is:
1. | Q<Kc | 2. | Q=0 |
3. | Q>Kc | 4. | Q=Kc |
In the reaction A(g) + 2B(g) ⇌ 2C(g) + D(g), the initial concentration of B is twice that of A and, at equilibrium, the concentrations of A and D are equal. The value of the equilibrium constant will be:
1. | 4 | 2. | 16 |
3. | 2 | 4. | 1 |