Two tubes of radii \({r}_1\) and \({r}_2,\) and length \({l}_1\) and \({l}_2,\) respectively, are connected in series and a liquid flows through each of them in streamlined conditions. \({P}_1\) and \({P}_2\) are pressure differences across the two tubes. If \({P}_2\) is \(4{P}_1\) and \({l}_2\) is \(\frac{{l}_1}{4},\) then the radius \({r}_2\) will be equal to:
1. \(2{r}_1\)

2. \(\dfrac{{r}_1}{2}\)

3. \(4{r}_1\)

4. \({r}_1\)
Subtopic:  Types of Flows |
 61%
JEE
Please attempt this question first.
Hints