Assertion (A): | If the efficiency of the engine is \(\frac1n,\) then the coefficient of performance of the reversed cycle working as a refrigerator is \(n-1\). |
Reason (R): | \(1-\frac{T_{\text{low}}}{T_{\text{high}}},\) while the coefficient of performance of the reversed cycle is \(\frac{T_{\text{low}}}{T_{\text{high}~-~T_{\text{low}}}}\). | The efficiency of Carnot's cycle is
1. | (A) is True but (R) is False. |
2. | (A) is False but (R) is True. |
3. | Both (A) and (R) are True and (R) is the correct explanation of (A). |
4. | Both (A) and (R) are True but (R) is not the correct explanation of (A). |
Statement I: | Molar heat capacity at constant pressure for all diatomic gases is the same. |
Statement II: | The specific heat capacity at constant pressure of all diatomic ideal gases is the same. |
1. | only (I) is correct |
2. | only (II) is correct |
3. | both (I) and (II) are correct |
4. | none of them are correct |
Consider the following two statements.
Statement I: | If heat is added to a system, its temperature must increase. |
Statement II: | If positive work is done by a system in a thermodynamic process, its volume must increase. |
1. | Both Statement I and Statement II are correct. |
2. | Statement I is correct and Statement II is incorrect. |
3. | Statement I is incorrect and Statement II is correct. |
4. | Both Statement I and Statement II are incorrect. |
The figure shows the \((P\text-V)\) diagram of an ideal gas undergoing a change of state from \(A\) to \(B.\) Four different paths \(\mathrm{I, II, III}\) and \(\mathrm{IV},\) as shown in the figure, may lead to the same change of state.
(a) | The change in internal energy is the same in cases \(\mathrm{IV}\) and \(\mathrm{III}\) but not in cases \(\mathrm{I}\) and \(\mathrm{II}.\) |
(b) | The change in internal energy is the same in all four cases. |
(c) | The work done is maximum in case \(\mathrm{I}.\) |
(d) | The work done is minimum in case \(\mathrm{II}.\) |
Which of the following options contains only correct statements?
1. | (b), (c) and (d) only | 2. | (a) and (d) only |
3. | (b) and (c) only | 4. | (a), (c) and (d) only |
Assertion (A): | It is not possible for a system, unaided by an external agency to transfer heat from a body at a lower temperature to another at a higher temperature. |
Reason (R): | It is not possible to violate the second law of thermodynamics. |
1. | Both (A) and (R) are True and (R) is the correct explanation of (A). |
2. | Both (A) and (R) are True but (R) is not the correct explanation of (A). |
3. | (A) is True but (R) is False. |
4. | Both (A) and (R) are False. |
Statement (A): | Heat is not a state function. |
Statement (B): | Heat supplied to a system is a path function. |
1. | Both statements (A) and (B) are True. |
2. | Both statements (A) and (B) are False. |
3. | Only statement (A) is True. |
4. | Only statement (B) is True. |
The Carnot cycle (reversible) of gas is represented by a pressure-volume curve as shown in the figure. Consider the following statements:
I. | The area \(ABCD\) = The work done on the gas |
II. | The area \(ABCD\) = The net heat absorbed |
III. | The change in the internal energy in the cycle = \(0\) |
Which of the statement(s) given above is/are correct?
1. | I only | 2. | II only |
3. | II and III | 4. | I, II, and III |
1. | The change in internal energy in the process \(BC\) is \(-500R.\) |
2. | The change in internal energy in the whole cyclic process is \(250R.\) |
3. | The change in internal energy in the process \(CA\) is \(700R.\) |
4. | The change in internal energy in the process \(AB\) is \(-350R.\) |
1. | The magnitude of the work done by the gas is \(RT_{0}\ln 2.\) |
2. | The work done by the gas is \(V_{0}T_{0}.\) |
3. | The net work done by the gas is zero. |
4. | The work done by the gas is \(2RT_{0}\ln2.\) |
1. | \(4\) | 2. | \(1\) |
3. | \(2\) | 4. | \(3\) |