Let \(f_1\) be the maximum frequency of the Lyman series, \(f_2\) be the frequency of the first line of the Lyman series, and \(f_3\) be the frequency of the series limit of the Balmer series, then which of the following is correct?
1. \(f_1-f_2=f_3\)
2. \(f_2-f_1=f_3\)
3. \(f_1+f_2=f_3\)
4. \(2f_1 = f_2 + f_3\)

Subtopic:  Spectral Series |
 64%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

If the wavelength of the first line in the Balmer Series of the hydrogen spectrum is \(\lambda,\) then what is the wavelength of the second line in this series?
1. \(\frac{20}{27}\lambda\)
2. \(\frac{27}{20}\lambda\)
3. \(\frac{25}{27}\lambda\)
4. \(\frac{27}{25}\lambda\)

Subtopic:  Spectral Series |
 77%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

\(E_1, E_2\) and \(E_3\) are energies of an electron in three consecutive energy levels of a hydrogen-like atom, such that \(E_1<E_2<E_3\). The wavelength emitted in the transition from \(E_3\) to \(E_2\) is \(\lambda_2\) and the wavelength emitted in the transition from \(E_2\) to \(E_1\) is \(\lambda_1\). The wavelength emitted in transition from \(E_3\) to \(E_1\) is:
1. \(\frac{\lambda_1\lambda_2}{\lambda_1-\lambda_2}\) 2. \(\frac{\lambda_1+\lambda_2}{2}\)
3. \(\sqrt{\lambda^2_1+\lambda^2_2}\) 4. \(\frac{\lambda_1\lambda_2}{\lambda_1+\lambda_2}\)
Subtopic:  Spectral Series |
 79%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

When an electron transitions from \(n=4\) to \(n=2,\) then the emitted line in the spectrum will be:
1. the first line of the Lyman series.
2. the second line of the Balmer series.
3. the first line of the Paschen series.
4. the second line of the Paschen series.

Subtopic:  Spectral Series |
 87%
From NCERT
AIPMT - 2000
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

Match List-I (Spectral Series) with List-II (corresponding wave number expressions).
List-I
(Series)
List-II
(Wave number in \(\text{cm}^{–1}\))
A. Balmer series I. \( R\left(\dfrac{1}{1^2}-\dfrac{1}{n^2}\right) \)
B. Lyman series II. \( R\left(\dfrac{1}{4^2}-\dfrac{1}{n^2}\right) \)
C. Brackett series III. \( R\left(\dfrac{1}{5^2}-\dfrac{1}{n^2}\right) \)
D. Pfund series  IV. \( R\left(\dfrac{1}{2^2}-\dfrac{1}{n^2}\right)\)
Choose the correct answer from the options given below:
1. A-I, B-IV, C-III, D-II
2. A-II, B-III, C-IV, D-I
3. A-IV, B-I, C-II, D-III
4. A-III, B-II, C-I, D-IV
Subtopic:  Spectral Series |
 87%
From NCERT
NEET - 2024
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

The spectral series which corresponds to the electronic transition from the levels \({n}_{2}=5,6,\ldots \) to the level \({n}_{1}=4\mathrm~\) is:
1. Pfund series 2. Brackett series
3. Lyman series 4. Balmer series
Subtopic:  Spectral Series |
 81%
From NCERT
NEET - 2024
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

The wavenumber of a photon in the Brackett series of a hydrogen atom is \(\frac{9}{400}R.\) What is the quantum number of the electron that has transited from the orbit?
1. \(5\)
2. \(6\)
3. \(4\)
4. \(7\)

Subtopic:  Spectral Series |
 65%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

What is the ratio of the longest to shortest wavelengths in Brackett series of hydrogen spectra?
1. \(\dfrac{25}{9}\) 2. \(\dfrac{17}{6}\)
3. \(\dfrac{9}{5}\) 4. \(\dfrac{4}{3}\)
Subtopic:  Spectral Series |
 81%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

The ratio of the longest wavelengths corresponding to the Lyman and Balmer series in the hydrogen spectrum is:
1. \(\dfrac{3}{23}\) 2. \(\dfrac{7}{29}\)
3. \(\dfrac{9}{31}\) 4. \(\dfrac{5}{27}\)
Subtopic:  Spectral Series |
 89%
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

The wavelength of the first line of the Lyman series for a hydrogen atom is equal to that of the second line of the Balmer series for a hydrogen-like ion. What is the atomic number \(Z\) of hydrogen-like ions?
1. \(4\)
2. \(1\)
3. \(2\)
4. \(3\)

Subtopic:  Spectral Series |
 75%
From NCERT
AIPMT - 2011
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital