The variation of EMF with time for four types of generators is shown in the figures. Which amongst them can be called AC voltage?

   
(a) (b)
   
(c) (d)

Choose the correct option from the given ones:

1. (a) and (d)
2. (a), (b), (c), and (d)
3. (a) and (b)
4.  only (a)

Subtopic:  AC vs DC |
 79%
Level 2: 60%+
NEET - 2019
Hints
Links

In an AC circuit \(I=100~\sin(200\pi t).\) The time required for the current to reach its peak value will be:
1. \(\frac{1}{100}~\text{sec}\) 2. \(\frac{1}{200}~\text{sec}\)
3. \(\frac{1}{300}~\text{sec}\) 4. \(\frac{1}{400}~\text{sec}\)
Subtopic:  RMS & Average Values |
 67%
Level 2: 60%+
Hints
Links

A \(100~\Omega\) resistor is connected to a \(220~\text{V}\), \(50~\text{Hz}\) \(\text{AC}\) supply. The net power consumed over a full cycle is:
1. \(484~\text{W}\) 2. \(848~\text{W}\)
3. \(400~\text{W}\) 4. \(786~\text{W}\)
Subtopic:  Power factor |
 87%
Level 1: 80%+
Hints
Links

advertisementadvertisement

The peak value of an alternating emf; \(E = E_{0}\sin\omega t\) is \(10~\text V\) and its frequency is \(50~\text{Hz}.\) At a time \(t=\dfrac{1}{600}~\text{s},\) the instantaneous value of the emf will be:
1. \(1~\text V\)
2. \(5\sqrt 3~\text V\)
3. \(5~\text V\)
4. \(10~\text V\)

Subtopic:  RMS & Average Values |
 79%
Level 2: 60%+
Hints

The output current versus time curve of a rectifier is shown in the figure. The average value of the output current in this case will be:
       
1. \(0\)
2. \(\dfrac{I_0}{2}\)
3. \(\dfrac{2I_0 }{ \pi}\)
4. \(I_0\)

Subtopic:  RMS & Average Values |
 67%
Level 2: 60%+
Hints
Links

How much power is dissipated in an \(LCR\) series circuit connected to an \(\text{AC}\) source of emf \( E\)?
1. \(\frac{\varepsilon^{2} R}{\left[R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}\right]}\) 2. \(\frac{\varepsilon^{2} \sqrt{R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}}}{R}\)
3. \(\frac{\varepsilon^{2}\left[R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}\right]}{R}\) 4. \(\frac{\varepsilon^{2}R}{\sqrt{R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}}}\)
Subtopic:  Power factor |
 70%
Level 2: 60%+
AIPMT - 2009
Hints
Links

advertisementadvertisement

An alternating current is given as \(i = i_1\cos\omega t- i_2 \sin \omega t.\) The value of rms current is given by:
1. \( \frac{1}{\sqrt{2}}\left(i_1+i_2\right) \)
2. \( \frac{1}{\sqrt{2}}\left(i_i+i_2\right)^2 \)
3. \( \frac{1}{\sqrt{2}}\left(i_1^2+i_2^2\right)^{1 / 2} \)
4. \( \frac{1}{2}\left(i_1^2+i_2^2\right)^{1 / 2}\)
Subtopic:  RMS & Average Values |
 81%
Level 1: 80%+
Hints
Links

An inductor of \(20~\text{mH},\) a capacitor of \(50~ \mu \text{F},\) and a resistor of \(40~ \Omega\) are connected in series across a source of emf \(V= 10\sin340t\). What will be the power loss in the AC circuit?
1. \(0.67~\text{W}\) 2. \(0.78~\text{W}\)
3. \(0.89~\text{W}\) 4. \(0.46~\text{W}\)
Subtopic:  Power factor |
Level 3: 35%-60%
NEET - 2016
Hints
Links

A resistance of \(20~ \Omega\) is connected to a source of an alternating potential, \(V=220\sin(100 \pi t).\) The time taken by the current to change from its peak value to its rms value will be: 
1. \( 0.2~\text{sec}\) 2. \( 0.25~\text{sec}\)
3. \(25 \times10^{-3}~\text{sec}\) 4. \(2.5 \times10^{-3}~\text{sec}\)
Subtopic:  RMS & Average Values |
 68%
Level 2: 60%+
Hints
Links

advertisementadvertisement

A generator produces a voltage that is given by \(V = 240\sin(120t)\), where \(t\) is in seconds. The frequency and rms voltage are:
1. \(60\) Hz and \(240\) V
2. \(19\) Hz and \(120\) V
3. \(19\) Hz and \(170\) V
4. \(754\) Hz and \(70\) V
Subtopic:  RMS & Average Values |
 84%
Level 1: 80%+
Hints
Links