If two planets are at mean distances \(d_1\) and \(d_2\) from the sun and their frequencies are \(n_1\) and \(n_2\) respectively, then:
1. \(n^2_1d^2_1= n_2d^2_2\)
2. \(n^2_2d^3_2= n^2_1d^3_1\)
3. \(n_1d^2_1= n_2d^2_2\)
4. \(n^2_1d_1= n^2_2d_2\)

Subtopic:  Kepler's Laws |
 68%
Level 2: 60%+
Hints
Links

The distance of a planet from the sun is \(5\) times the distance between the earth and the sun. The time period of the planet is: 

1. \(5^{3/2}\) years 2. \(5^{2/3}\) years
3. \(5^{1/3}\) years 4. \(5^{1/2}\) years

Subtopic:  Kepler's Laws |
 80%
Level 1: 80%+
Hints
Links

The figure shows the elliptical orbit of a planet \(m\) about the sun \({S}.\) The shaded area \(SCD\) is twice the shaded area \(SAB.\) If \(t_1\) is the time for the planet to move from \(C\) to \(D\) and \(t_2\) is the time to move from \(A\) to \(B,\) then:
                     

1. \(t_1>t_2\) 2. \(t_1=4t_2\)
3. \(t_1=2t_2\) 4. \(t_1=t_2\)


Subtopic:  Kepler's Laws |
 72%
Level 2: 60%+
AIPMT - 2009
Hints
Links

advertisementadvertisement

When a planet revolves around the sun in an elliptical orbit, then which of the following remains constant?

1. Velocity 2. Angular velocity
3. Areal velocity 4. Both 2 & 3
Subtopic:  Kepler's Laws |
 51%
Level 3: 35%-60%
Hints
Links

If \(R\) is the radius of the orbit of a planet and \(T\) is the time period of the planet, then which of the following graphs correctly shows the motion of a planet revolving around the sun?

1.        2.    
3. 4.    
Subtopic:  Kepler's Laws |
 82%
Level 1: 80%+
Hints
Links

Two satellites \(S_1\) and \(S_2\) are revolving around a planet in coplanar and concentric circular orbits of radii \(R_1\) and \(R_2\) in the same direction respectively. Their respective periods of revolution are \(1~\text{hr}\) and \(8~\text{hr}.\) The radius of the orbit of satellite \(S_1\) is equal to \(10^4~\text{km}.\) Find the relative speed when they are closest to each other. 
1. \(2\pi \times 10^4~\text{kmph}\)
2. \(\pi \times 10^4~\text{kmph}\)
3. \(\frac{\pi}{2} \times 10^4~\text{kmph}\)
4. \(\frac{\pi}{3} \times 10^4~\text{kmph}\)

Subtopic:  Kepler's Laws |
 58%
Level 3: 35%-60%
Hints
Links

advertisementadvertisement

Two planets orbit a star in circular paths with radii \(R\) and \(4R,\) respectively. At a specific time, the two planets and the star are aligned in a straight line. If the orbital period of the planet closest to the star is \(T,\) what is the minimum time after which the star and the planets will again be aligned in a straight line?

1. \((4)^2T\) 2. \((4)^{\frac13}T\)
3. \(2T\) 4. \(8T\)
Subtopic:  Kepler's Laws |
 66%
Level 2: 60%+
NEET - 2022
Hints

The radius of Martian orbit around the sun is about \(4\) times the radius of the orbit of mercury. The Martian year is \(687\) earth days. Then which of the following is the length of \(1\) year on mercury?
1. \(172\) earth days
2. \(124\) earth days
3. \(88\) earth days
4. \(225\) earth days
Subtopic:  Kepler's Laws |
 52%
Level 3: 35%-60%
NEET - 2025
Please attempt this question first.
Hints
Please attempt this question first.

In planetary motion, the areal velocity of the position vector of a planet depends on the angular velocity \((\omega)\) and the distance of the planet from the sun \((r)\). The correct relation for areal velocity is:
1. \(\frac{dA}{dt}\propto \omega r\)
2. \(\frac{dA}{dt}\propto \omega^2 r\)
3. \(\frac{dA}{dt}\propto \omega r^2\)
4. \(\frac{dA}{dt}\propto \sqrt{\omega r}\)

Subtopic:  Kepler's Laws |
 57%
Level 3: 35%-60%
Hints
Links

advertisementadvertisement

If \(A\) is the areal velocity of a planet of mass \(M,\) then its angular momentum is:

1. \(\frac{M}{A}\) 2. \(2MA\)
3. \(A^2M\) 4. \(AM^2\)
Subtopic:  Kepler's Laws |
 74%
Level 2: 60%+
Hints
Links