When an object is shot from the bottom of a long, smooth inclined plane kept at an angle of \(60^\circ\) with horizontal, it can travel a distance \(x_1\) along the plane. But when the inclination is decreased to \(30^\circ\) and the same object is shot with the same velocity, it can travel \(x_2\) distance. Then \(x_1:x_2\) will be:
1. \(1:2\sqrt{3}\)
2. \(1:\sqrt{2}\)
3. \(\sqrt{2}:1\)
4. \(1:\sqrt{3}\)
A flexible smooth track is fixed in two alternate arrangements, as shown in figures 1 and 2. The length of the track used is the same in each case, and the height through which it falls from the bench to the floor is the same. A toy car is released at rest and slides down the track (One after the other on both the tracks). Air resistance can be ignored. Which of the following statement is true?
1. | The speed at the bottom, as well as the time taken on both the tracks, are the same. |
2. | The speed at the bottom, as well as the time taken on both the tracks, are different. |
3. | The speed at the bottom is different but the time taken on both the tracks is the same. |
4. | The speed at the bottom is the same but the time taken on both the tracks is different. |
A ball is dropped from a height of \(5~\text {m}.\) If it rebounds up to a height of \(1.8~\text {m},\) then the ratio of velocities of the ball after and before the rebound will be:
1. \(\dfrac{3}{5}\)
2. \(\dfrac{2}{5}\)
3. \(\dfrac{1}{5}\)
4. \(\dfrac{4}{5}\)
If a stone is projected vertically upward from the ground at a speed of 10 m/s, then it's: (g = 10 )
1. Potential energy will be maximum after 0.5 s
2. Kinetic energy will be maximum again after 1 s
3. Kinetic energy = potential energy at a height of 2.5 m from the ground
4. Potential energy will be minimum after 1 s
A body is thrown vertically up with a certain initial velocity. The potential and the kinetic energy of the body are equal at a point P in its path. If the same body is thrown with double the velocity upwards, the ratio of the potential and the kinetic energies of the body when it crosses at the same point will be:
1. 1:1
2. 1:4
3. 1:7
4. 1:8
A ball is thrown vertically downwards from a height of \(20\) m with an initial velocity \(v_0\). It collides with the ground, loses \(50\%\) of its energy in a collision and rebounds to the same height. The initial velocity \(v_0\) is: (Take \(g = 10~\text{m/s}^2\))
1. \(14~\text{m/s}\)
2. \(20~\text{m/s}\)
3. \(28~\text{m/s}\)
4. \(10~\text{m/s}\)
A block of mass \(M\) is attached to the lower end of a vertical spring. The spring is hung from the ceiling and has a force constant value of \(k.\) The mass is released from rest with the spring initially unstretched. The maximum extension produced along the length of the spring will be:
1. \(Mg/k\)
2. \(2Mg/k\)
3. \(4Mg/k\)
4. \(Mg/2k\)
A chain of length \(L\) and mass \(m\) is placed upon a smooth surface. The length of \((BA)\) is \((L–b).\) What will be the velocity of the chain when its end \(A\) reaches \(B?\)
1. \( \sqrt{\dfrac{2 g \sin \theta}{L}\left(L^2-b^2\right)} \)
2. \( \sqrt{\dfrac{g \sin \theta}{2 L}\left(L^2-b^2\right)} \)
3. \( \sqrt{\dfrac{g \sin \theta}{L}\left(L^2-b^2\right)}\)
4. None of these
A spherical ball of mass \(20\) kg is stationary at the top of a hill of height\(100\) m. It slides down a smooth surface to the ground, then climbs up another hill of height \(30\) m and finally slides down to a horizontal base at a height of \(20\) m above the ground. The velocity attained by the ball is:
1. \(10 \) m/s
2. \(10 \sqrt{30} \) m/s
3. \(40 \) m/s
4. \(20 \) m/s