The graph between the displacement \(x\) and time \(t\) for a particle moving in a straight line is shown in the figure.
During the interval OA, AB, BC and CD the acceleration of the particle is:
OA | AB | BC | CD | |
1. | + | 0 | + | + |
2. | – | 0 | + | 0 |
3. | + | 0 | – | + |
4. | – | 0 | – | 0 |
The displacement time graph of a moving particle is shown in the figure below. The instantaneous velocity of the particle is negative at the point:
1. | D | 2. | F |
3. | C | 4. | E |
A particle shows distance-time curve as given in this figure. The maximum instantaneous velocity of the particle is around the point:
1. B
2. C
3. D
4. A
The graph below shows position as a function of time for two trains running on parallel tracks.
Which of the following statements is true?
1. | At time \(t_B \) both the trains have the same velocity |
2. | Both the trains have the same velocity at some time after \(t_B \) |
3. | Both the trains have the same velocity at some time before \(t_B \) |
4. | Both the trains have the same acceleration |
Among the four graphs shown in the figure, there is only one graph for which average velocity over the time interval \((0,T)\) can vanish for a suitably chosen \(T\). Select the graph.
1. | 2. | ||
3. | 4. |
The position (\(x\)) of a particle in a straight line motion is given by \(x = 2 + 10 t - 5 t^{2}~\text{m}\). Its velocity (\(v\)) is best represented by?
1. | ![]() |
2. | ![]() |
3. | ![]() |
4. | ![]() |
1. | ![]() |
2. | ![]() |
3. | ![]() |
4. | ![]() |
A lift is going up. The variation in the speed of the lift is as given in the graph. What is the height to which the lift takes the passengers?
1. | \(3.6~\text{m}\) |
2. | \(28.8~\text{m}\) |
3. | \(36.0~\text{m}\) |
4. | It cannot be calculated from the above graph. |
The velocity-time \((v\text-t)\) graph of a body moving in a straight line is shown in the figure. The displacement and distance travelled by the body in \(6\) s are, respectively:
1. \(8\) m, \(16\) m
2. \(16\) m, \(8\) m
3. \(16\) m, \(16\) m
4. \(8\) m, \(8\) m