premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
Based on the graph below, the average rate of reaction will be:
1. \(\frac{[R_{2}]-[R_{1}]}{t_{2}-t_{1}}\) 2. \(-(\frac{[R_{2}]-[R_{1}]}{t_{2}-t_{1}})\)
3. \(\frac{[R_{2}]}{t_{2}}\) 4. \(-(\frac{[R_{1}]-[R_{2}]}{t_{2}-t_{1}})\)
Subtopic:  Definition, Rate Constant, Rate Law |
 73%
Level 2: 60%+
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

Match the items in Column I with Column II:

Column I Column II
A. Diamond to graphite conversion 1. Short interval of time
B. Instantaneous rate 2. Ordinarily rate of conversion is imperceptible
C. Average rate 3. Long duration of time

Codes:

A B C
1. 2 1 3
2. 1 2 3
3. 3 2 1
4. 1 3 2
Subtopic:  Definition, Rate Constant, Rate Law |
 74%
Level 2: 60%+
Hints

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

Consider the following graph:
      

The instantaneous rate of reaction at t = 600 sec will be:

1. - 4.75 ×10-4 mol L-1s-1
2. 5.75×10-5 mol L-1s-1
3.  6.75×10-6 mol L-1s-1
4. -6.75×10-6 mol L-1s-1

Subtopic:  Definition, Rate Constant, Rate Law |
 54%
Level 3: 35%-60%
Hints

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

In the following reaction: xA →  yB

log-d[A]dt= log d[B]dt + 0.3 

where the -ve sign indicates the rate of disappearance of the reactant. Then, x : y equals:

1. 1:2 2. 2:1
3. 3:1 4. 3:10
Subtopic:  Definition, Rate Constant, Rate Law |
 54%
Level 3: 35%-60%
Hints

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

A gaseous reaction A2(g) → B(g) + 12C(g) shows increase in pressure from 100 mm to 120 mm in 5 minutes. The rate of disappearance of Awill be : 

1. 4 mm min-1 2. 8 mm min-1
3. 16 mm min-1 4. 2 mm min-1
Subtopic:  Definition, Rate Constant, Rate Law |
Level 3: 35%-60%
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

During the formation of ammonia by Haber's process N+ 3H2 → 2NH3, the rate of appearance of NH3 was measured as 2.5 x 10-4 mol L-1 s-1. The rate of disappearance of H2 will be: 

1. 2.5 x 10-4 mol L-1 s-1

2. 1.25 x 10-4 mol L-1 s-1

3. 3.75 x 10-4 mol L-1 s-1

4. 15.00 x 10-4 mol L-1 s-1

Subtopic:  Definition, Rate Constant, Rate Law |
 85%
Level 1: 80%+
Hints
Links

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

For the reaction,

N2O5(g) → 2NO2(g) + \(\frac{1}{2}\)O2(g)

the value of the rate of disappearance of N2O5 is given as 6.25× 10-3 mol L-1s-1. The rate of formation of NO2 and O2 is given respectively as:

1. 6.25 x 10-3 mol L-1s-1 and 6.25 x 10-3 mol L-1s-1

2. 1.25 x 10-2 mol L-1s-1 and 3.125 x 10-3 mol L-1s-1

3. 6.25 x 10-3 mol L-1s-1 and 3.125 x 10-3 mol L-1s-1

4. 1.25 x 10-2 mol L-1s-1 and 6.25 x 10-3 mol L-1s-1

Subtopic:  Definition, Rate Constant, Rate Law |
 87%
Level 1: 80%+
NEET - 2010
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The following reaction was carried out at 300 K.

2SO2(g)  +  O2(g) →  2SO3(g)

The rate of formation of SO3 is related to the rate of disappearance of O2  by the following expression:

1. -O2t=+12SO3t                           

2. -O2t=SO3t

3. -O2t=-12SO3t                           

4. None of the above.

Subtopic:  Definition, Rate Constant, Rate Law |
 89%
Level 1: 80%+
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
For the reaction, \(\mathrm{N}_2+3 \mathrm{H}_2 \rightarrow 2 \mathrm{NH}_3,\) if, \(\dfrac{d[NH_{3}]}{dt} \ = \ 2\times 10^{-4} \ mol \ L^{-1} \ s^{-1}\), the value of  \(\dfrac{-d[H_{2}]}{dt}\) would be:
1. \(3 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} \)
2. \(4 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} \)
3. \(6 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} \)
4. \(1 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
Subtopic:  Definition, Rate Constant, Rate Law |
 85%
Level 1: 80%+
AIPMT - 2009
Hints

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

For the reaction, \(2 A+B \rightarrow 3 C+D\)

Which of the following is an incorrect expression for the rate of reaction?

1. \(-\frac{d[C]}{{3} d t }\) 2. \(-\frac{d[B]}{d t} \)
3. \(\frac{d[D]}{d t} \) 4. \(-\frac{d[A]}{2 d t}\)
Subtopic:  Definition, Rate Constant, Rate Law |
 90%
Level 1: 80%+
AIPMT - 2006
Hints
Links