A nucleus of uranium decays at rest into nuclei of thorium and helium. Then:

1. The nucleus helium has more kinetic energy than the thorium nucleus
2. The helium nucleus has less momentum than the thorium nucleus
3. The helium nucleus has more momentum than the thorium nucleus
4. The helium nucleus has less kinetic energy than the thorium nucleus

 67%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

If the radius of \(_{13}^{27}\mathrm{Al}\) nucleus is taken to be \({R}_{\mathrm{Al}},\) then the radius of \(_{53}^{125}\mathrm{Te}\) nucleus is near:

1. \(\left(\frac{53}{13}\right) ^{\frac{1}{3}}~{R_{Al}}\) 2. \(\frac{5}{3}~{R_{Al}}\)
3. \(\frac{3}{5}~{R_{Al}}\) 4. \(\left(\frac{13}{53}\right)~{R_{Al}}\)
Subtopic:  Nucleus |
 80%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

The Binding energy per nucleon of \(^{7}_{3}\mathrm{Li}\) and \(^{4}_{2}\mathrm{He}\) nucleon are \(5.60~\text{MeV}\) and \(7.06~\text{MeV}\), respectively. In the nuclear reaction \(^{7}_{3}\mathrm{Li} + ^{1}_{1}\mathrm{H} \rightarrow ^{4}_{2}\mathrm{He} + ^{4}_{2}\mathrm{He} +Q\), the value of energy \(Q\) released is:
1. \(19.6~\text{MeV}\)
2. \(-2.4~\text{MeV}\)
3. \(8.4~\text{MeV}\)
4. \(17.3~\text{MeV}\)

Subtopic:  Nuclear Binding Energy |
 68%
From NCERT
AIPMT - 2014
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

A radioisotope 'X' with a half-life 1.4 × 109 years decays to 'Y' which is stable. A sample of the rock from a cave was found to contain 'X' and 'Y' in the ratio 1:7. The age of the rock is:

1. 1.96 x 109 years

2. 3.92 x 109 years

3. 4.20 x 109 years

4. 8.40 x 109 years

 75%
From NCERT
AIPMT - 2014
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

A certain mass of hydrogen is changed to Helium by the process of fusion. The mass defect in the fusion reaction is \(0.02866~\text{u}.\)The energy liberated per nucleon is:
(given \(1~\mathrm{u} = 931~\text{MeV}\) )
1. \(26.7~\text{MeV}\)
2. \(6.675~\text{MeV}\)
3. \(13.35~\text{MeV}\)
4. \(2.67~\text{MeV}\)
Subtopic:  Mass-Energy Equivalent |
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

The half-life of a radioactive isotope \(X\) is \(20\) years. It decays to another element \(Y\) which is stable. The two elements \(X\) and \(Y\) were found to be in the ratio \(1:7\) in a sample of a given rock. The age of the rock is estimated to be:
1. \(60\) years
2. \(80\) years
3. \(100\) years
4. \(40\) years
 82%
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

How does the binding energy per nucleon vary with the increase in the number of nucleons?
1.  decrease continuously with mass number.
2. first decreases and then increases with an increase in mass number.
3. first increases and then decreases with an increase in mass number.
4. increases continuously with mass number.
Subtopic:  Nuclear Binding Energy |
 82%
From NCERT
NEET - 2013
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

If the nuclear radius of \(^{27}\text{Al}\) is \(3.6\) Fermi, the approximate nuclear radius of \(^{64}\text{Cu}\) in Fermi is:
1. \(2.4\)
2. \(1.2\)
3. \(4.8\)
4. \(3.6\)

Subtopic:  Nucleus |
 89%
From NCERT
AIPMT - 2012
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

A mixture consists of two radioactive materials A1 and A2 with half-lives of 20 s and 10 s respectively. Initially, the mixture has 40 g of A1 and 160 g of A2. The amount of the two in the mixture will become equal after:

1. 60 s

2. 80 s

3. 20 s

4. 40 s

 69%
From NCERT
AIPMT - 2012
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

The half-life of a radioactive nucleus is 50 days. The time interval (t2-t1) between the time t2 when 23 of it has decayed and the time t1 when 13 of it had decayed is:

1.  50 days 

2.  60 days 

3.  15 days 

4.  30 days 

 71%
From NCERT
AIPMT - 2012
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital