A rod of weight \(w\) is supported by two parallel knife edges, \(A\) and \(B\), and is in equilibrium in a horizontal position. The knives are at a distance \(d\) from each other. The centre of mass of the rod is at a distance \(x \) from \(A\). The normal reaction on \(A\) is:
1. \(wx \over d\) 2. \(wd \over x\)
3. \(w(d-x) \over x\) 4. \(w(d-x) \over d\)
Subtopic:  Torque |
 69%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

An automobile moves on a road with a speed of \(54~\text{kmh}^{-1}.\)  The radius of its wheels is \(0.45\) m and the moment of inertia of the wheel about its axis of rotation is \(3~\text{kg-m}^2.\) If the vehicle is brought to rest in \(15\) s, the magnitude of average torque transmitted by its brakes to the wheel is:
1. \(6.66~\text{kg-m}^2\text{s}^{-2}\)
2. \(8.58~\text{kg-m}^2\text{s}^{-2}\)
3. \(10.86~\text{kg-m}^2\text{s}^{-2}\)
4. \(2.86~\text{kg-m}^2\text{s}^{-2}\)

Subtopic:  Torque |
 74%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

A rod \(PQ\) of mass \(M\) and length \(L\) is hinged at end \(P\). The rod is kept horizontal by a massless string tied to point \(Q\) as shown in the figure. When the string is cut, the initial angular acceleration of the rod is: 
                               

1. \(\dfrac{g}{L}\) 2. \(\dfrac{2g}{L}\)
3. \(\dfrac{2g}{3L}\) 4. \(\dfrac{3g}{2L}\)
Subtopic:  Torque |
 82%
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

\(\mathrm{ABC}\) is an equilateral triangle with \(O\) as its centre. \(F_1,\) \(F_2,\) and \(F_3\) represent three forces acting along the sides \({AB},\) \({BC}\) and \({AC}\) respectively. If the total torque about \(O\) is zero, then the magnitude of \(F_3\) is:
        
1. \(F_1+F_2\)
2. \(F_1-F_2\)
3. \(\frac{F_1+F_2}{2}\)
4. \(2F_1+F_2\)

Subtopic:  Torque |
 78%
From NCERT
AIPMT - 2012
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

If \(\vec F\) is the force acting on a particle having position vector \(\vec r\) and \(\vec \tau\) be the torque of this force about the origin, then:

1. \(\vec r\cdot\vec \tau\neq0\text{ and }\vec F\cdot\vec \tau=0\)
2. \(\vec r\cdot\vec \tau>0\text{ and }\vec F\cdot\vec \tau<0\)
3. \(\vec r\cdot\vec \tau=0\text{ and }\vec F\cdot\vec \tau=0\)
4. \(\vec r\cdot\vec \tau=0\text{ and }\vec F\cdot\vec \tau\neq0\)
Subtopic:  Torque |
 82%
From NCERT
AIPMT - 2009
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

A uniform rod of length \(l\) and mass \(M\) is free to rotate in a vertical plane about \(A\). The rod, initially in the horizontal position, is released. The initial angular acceleration of the rod is: (Moment of inertia of the rod about \(A\) is \(\frac{Ml^2}{3}\))
1. \(\frac{3g}{2l}\)
2. \(\frac{2l}{3g}\)
3. \(\frac{3g}{2l^2}\)
4. \(\frac{Mg}{2}\)

Subtopic:  Torque |
 75%
From NCERT
AIPMT - 2006
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

A wheel having a moment of inertia of \(2\) kg–m2 about its vertical axis rotates at the rate of \(60\) rpm about the axis. The torque which can stop the wheel's rotation in one minute would be:

1. \(\dfrac{\pi }{12}\) N-m 2. \(\dfrac{\pi }{15}\) N-m
3. \(\dfrac{\pi }{18}\) N-m 4. \(\dfrac{2\pi }{15}\) N-m
Subtopic:  Torque |
 89%
From NCERT
AIPMT - 2004
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

In the figure given below, \(O\) is the centre of an equilateral triangle \(ABC\) and \(\vec{F_{1}} ,\vec F_{2}, \vec F_{3}\) are three forces acting along the sides \(AB\), \(BC\) and \(AC\). What should be the magnitude of \(\vec{F_{3}}\) so that total torque about \(O\) is zero?

1. \(\left|\vec{F_{3}}\right|= \left|\vec{F_{1}}\right|+\left|\vec{F_{2}}\right|\)
2. \(\left|\vec{F_{3}}\right|= \left|\vec{F_{1}}\right|-\left|\vec{F_{2}}\right|\)
3. \(\left|\vec{F_{3}}\right|= \vec{F_{1}}+2\vec{F_{2}}\)
4. Not possible

Subtopic:  Torque |
 81%
From NCERT
AIPMT - 1998
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital