1. | \(wx \over d\) | 2. | \(wd \over x\) |
3. | \(w(d-x) \over x\) | 4. | \(w(d-x) \over d\) |
An automobile moves on a road with a speed of \(54~\text{kmh}^{-1}.\) The radius of its wheels is \(0.45\) m and the moment of inertia of the wheel about its axis of rotation is \(3~\text{kg-m}^2.\) If the vehicle is brought to rest in \(15\) s, the magnitude of average torque transmitted by its brakes to the wheel is:
1. \(6.66~\text{kg-m}^2\text{s}^{-2}\)
2. \(8.58~\text{kg-m}^2\text{s}^{-2}\)
3. \(10.86~\text{kg-m}^2\text{s}^{-2}\)
4. \(2.86~\text{kg-m}^2\text{s}^{-2}\)
A rod \(PQ\) of mass \(M\) and length \(L\) is hinged at end \(P\). The rod is kept horizontal by a massless string tied to point \(Q\) as shown in the figure. When the string is cut, the initial angular acceleration of the rod is:
1. | \(\dfrac{g}{L}\) | 2. | \(\dfrac{2g}{L}\) |
3. | \(\dfrac{2g}{3L}\) | 4. | \(\dfrac{3g}{2L}\) |
\(\mathrm{ABC}\) is an equilateral triangle with \(O\) as its centre. \(F_1,\) \(F_2,\) and \(F_3\) represent three forces acting along the sides \({AB},\) \({BC}\) and \({AC}\) respectively. If the total torque about \(O\) is zero, then the magnitude of \(F_3\) is:
1. \(F_1+F_2\)
2. \(F_1-F_2\)
3. \(\frac{F_1+F_2}{2}\)
4. \(2F_1+F_2\)
If \(\vec F\) is the force acting on a particle having position vector \(\vec r\) and \(\vec \tau\) be the torque of this force about the origin, then:
1. | \(\vec r\cdot\vec \tau\neq0\text{ and }\vec F\cdot\vec \tau=0\) |
2. | \(\vec r\cdot\vec \tau>0\text{ and }\vec F\cdot\vec \tau<0\) |
3. | \(\vec r\cdot\vec \tau=0\text{ and }\vec F\cdot\vec \tau=0\) |
4. | \(\vec r\cdot\vec \tau=0\text{ and }\vec F\cdot\vec \tau\neq0\) |
A uniform rod of length \(l\) and mass \(M\) is free to rotate in a vertical plane about \(A\). The rod, initially in the horizontal position, is released. The initial angular acceleration of the rod is: (Moment of inertia of the rod about \(A\) is \(\frac{Ml^2}{3}\))
1. \(\frac{3g}{2l}\)
2. \(\frac{2l}{3g}\)
3. \(\frac{3g}{2l^2}\)
4. \(\frac{Mg}{2}\)
A wheel having a moment of inertia of \(2\) kg–m2 about its vertical axis rotates at the rate of \(60\) rpm about the axis. The torque which can stop the wheel's rotation in one minute would be:
1. | \(\dfrac{\pi }{12}\) N-m | 2. | \(\dfrac{\pi }{15}\) N-m |
3. | \(\dfrac{\pi }{18}\) N-m | 4. | \(\dfrac{2\pi }{15}\) N-m |
In the figure given below, \(O\) is the centre of an equilateral triangle \(ABC\) and \(\vec{F_{1}} ,\vec F_{2}, \vec F_{3}\) are three forces acting along the sides \(AB\), \(BC\) and \(AC\). What should be the magnitude of \(\vec{F_{3}}\) so that total torque about \(O\) is zero?
1. \(\left|\vec{F_{3}}\right|= \left|\vec{F_{1}}\right|+\left|\vec{F_{2}}\right|\)
2. \(\left|\vec{F_{3}}\right|= \left|\vec{F_{1}}\right|-\left|\vec{F_{2}}\right|\)
3. \(\left|\vec{F_{3}}\right|= \vec{F_{1}}+2\vec{F_{2}}\)
4. Not possible