The value of \(M\), as shown, for which the rod will be in equilibrium is:
      

1. \(1\) kg 2. \(2\) kg
3. \(4\) kg 4. \(6\) kg
Subtopic:  Torque |
 88%
Level 1: 80%+
Hints
Links

In the figure given below, \(O\) is the centre of an equilateral triangle \(ABC\) and \(\vec{F_{1}} ,\vec F_{2}, \vec F_{3}\) are three forces acting along the sides \(AB\), \(BC\) and \(AC\). What should be the magnitude of \(\vec{F_{3}}\) so that total torque about \(O\) is zero?

1. \(\left|\vec{F_{3}}\right|= \left|\vec{F_{1}}\right|+\left|\vec{F_{2}}\right|\)
2. \(\left|\vec{F_{3}}\right|= \left|\vec{F_{1}}\right|-\left|\vec{F_{2}}\right|\)
3. \(\left|\vec{F_{3}}\right|= \vec{F_{1}}+2\vec{F_{2}}\)
4. Not possible

Subtopic:  Torque |
 82%
Level 1: 80%+
AIPMT - 1998
Hints
Links

A force \(\vec{F}=\hat{i}+2\hat{j}+3\hat{k}~\text{N}\) acts at a point \(\hat{4i}+3\hat{j}-\hat{k}~\text{m}\). Let the magnitude of the torque about the point \(\hat{i}+2\hat{j}+\hat{k}~\text{m}\) be \(\sqrt{x}~\text{N-m}\). The value of \(x\) is:
1. \(145\)
2. \(195\)
3. \(245\)
4. \(295\)

Subtopic:  Torque |
 76%
Level 2: 60%+
JEE
Hints

advertisementadvertisement

A wheel with a radius of \(20\) cm has forces applied to it as shown in the figure. The torque produced by the forces of \(4\) N at \(A\), \(8~\)N at \(B\), \(6\) N at \(C\), and \(9~\)N at \(D\), at the angles indicated, is:

1. \(5.4\) N-m anticlockwise

2. \(1.80\) N-m clockwise

3. \(2.0\) N-m clockwise

4. \(3.6\) N-m clockwise

Subtopic:  Torque |
 78%
Level 2: 60%+
Hints
Links

Which of the following is the value of the torque of force \(F\) about origin \(O:\)


1. \(\vec{\tau}=5(1-\sqrt{3}) \hat{k}\) N-m
2. \(\vec{\tau}=5(1-\sqrt{3}) \hat{j}\) N-m
3. \(\vec{\tau}=5(\sqrt{3}-1) \hat{i}\) N-m
4. \(\vec{\tau}=\sqrt{3} \hat{j}\) N-m

Subtopic:  Torque |
 74%
Level 2: 60%+
Hints
Links

A force \(\vec F = \left(2 \hat{i} + 3 \hat{j} + 4 \hat{k} \right) \text{N}\) is acting at point \((2~\text{m}, -3~\text{m}, 6~\text{m}).\) Find the torque of this force about a point whose position vector is \(\left(2 \hat{i}+ 5\hat {j}+ 3\hat {k}\right) \text{m}\).
1. \(\vec{\tau}=(-17 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+4 \widehat{\mathrm{k}})\) N-m
2. \(\vec{\tau}=(-17 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}-4 \widehat{\mathrm{k}}) \) N-m
3. \(\vec{\tau}=(17 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}+4 \widehat{\mathrm{k}})\) N-m
4. \(\vec{\tau}=(-41 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+16 \hat{\mathrm{k}})\) N-m
Subtopic:  Torque |
 69%
Level 2: 60%+
Hints
Links

advertisementadvertisement

Shown in the figure is a rigid and uniform one-metre long rod, \(AB\), held in the horizontal position by two strings tied to its ends and attached to the ceiling. The rod is of mass \(m\) and has another weight of mass \(2m\) hung at a distance of \(75\) cm from \(A\). The tension in the string at \(A\) is:
         
1. \(2mg\)
2. \(0.5mg\)
3. \(0.75mg\)
4. \(1mg\)

Subtopic:  Torque |
 62%
Level 2: 60%+
Hints
Links

A rod of weight \(w\) is supported by two parallel knife edges, \(A\) and \(B\), and is in equilibrium in a horizontal position. The knives are at a distance \(d\) from each other. The centre of mass of the rod is at a distance \(x \) from \(A\). The normal reaction on \(A\) is:
1. \(wx \over d\) 2. \(wd \over x\)
3. \(w(d-x) \over x\) 4. \(w(d-x) \over d\)
Subtopic:  Torque |
 69%
Level 2: 60%+
NEET - 2015
Hints
Links

For \(L = 3.0~\text{m,}\) the total torque about pivot \(A\) provided by the forces as shown in the figure is:

 

1. \(210 ~\text{Nm}\) 2. \(140 ~\text{Nm}\)
3. \(95 ~\text{Nm}\) 4. \(75 ~\text{Nm}\)
Subtopic:  Torque |
 60%
Level 2: 60%+
Hints
Links

advertisementadvertisement

A body of mass M is moving on a circular track of radius r in such a way that its kinetic energy K depends on the distance travelled by the body s according to relation K = βs, where β is a constant. The angular acceleration of the body is:

1.  βrM2

2.  βrM

3.  Mr2β

4.  βMr

Subtopic:  Torque |
Level 3: 35%-60%
Hints
Links