Salt with the highest electrolytic conductivity in solution is :
1. K2[PtCl6]
2. [Co(NH3)3(NO2)3]
3. K4[Fe(CN)6]
4. [Co(NH3)4]SO4
If hydrogen electrodes dipped in two solutions of pH = 4 and pH = 6 are connected by a salt bridge, the emf of the resulting cell is -
1. 0.177 V
2. 0.3 V
3. 0.118 V
4. 0.104 V
Calculate the emf of the given cell:
Zn(s) | Zn+2 (0.1M) || Sn+2 (0.001M) | Sn(s)
(Given
1. 0.62 V
2. 0.56 V
3. 1.12 V
4. 0.31 V
For a reaction A(s) + 2B+ A2+ + 2B(s) ; KC has been found to be 1012. The is :
1. | 0.35 V | 2. | 0.71 V |
3. | 0.01 V | 4. | 1.36 V |
Limiting molar conductivities, for the given solutions, are :
\(\lambda_{m}^{0} \left(\right. H_{2} S O_{4} \left.\right) = x\) \(S c m^{2}\) \(m o l^{- 1}\)
\(\lambda_{m}^{0} \left(\right. K_{2} S O_{4} \left.\right) = y\) \(S c m^{2}\) \(m o l^{- 1}\)
\(\lambda_{m}^{0} \left(\right. C H_{3} C O O K \left.\right) = z\) \(S c m^{2}\) \(m o l^{- 1}\)
From the data given above, it can be concluded that \(\lambda_m^0 \) in (\(S\ cm^2\ mol^{-1}\)) for CH3COOH will be :
1. \(\mathrm{x-y+2z}\)
2. \(\mathrm{x+y+z}\)
3. \(\mathrm{x-y+z}\)
4. \(\mathrm{{(x-y) \over 2}+z}\)
The equilibrium constant of a 2 electron redox reaction at 298 K is 3.8 x . The cell potential Eo (in V) and the free energy change ∆Go (in kJ mol-1 ) for this equilibrium respectively, are -
1. | -0.071, -13.8 | 2. | -0.071, 13.8 |
3. | 0.71, -13.8 | 4. | 0.071, -13.8 |
The specific conductance of 0.01 M solution of a weak monobasic acid is 0.20 x 10-3 S cm-1. The dissociation constant of the acid is-
[Given = 400 S ]
1. | \(5 \times 10^{-2}\) | 2. | \(2.5 \times 10^{-5}\) |
3. | \(5 \times 10^{-4}\) | 4. | \(2.2 \times 10^{-11}\) |
For a cell involving one electron \(E_{cell}^{\ominus} = 0 . 59 V\) at 298 K. The equilibrium constant for the cell reaction is :
\(\mathrm{[Given~ that~ \frac {2.303 ~RT}{F} = 0.059 ~V~ at~ T = 298 K]}\)
1. | \(1 . 0 \times \left(10\right)^{30}\) | 2. | \(1 . 0 \times \left(10\right)^{2}\) |
3. | \(1 . 0 \times \left(10\right)^{5}\) | 4. | \(1 . 0 \times \left(10\right)^{10}\)
|
Given the following cell reaction:
\(\mathrm{2Fe^{3+}(aq) \ + \ 2I^{-}(aq)\rightarrow 2Fe^{2+}(aq) \ + \ I_{2}(aq)}\)
[Given: \(F = 96500\) \(C\) \(mol^{- 1}\)]
1. \(23 . 16\) \(kJ\) \(mol^{- 1}\)
2. \(- 46 . 32\) \(kJ\) \(mol^{- 1}\)
3. \(- 23 . 16\) \(kJ\) \(mol^{- 1}\)
4. \(46 . 32\) \(kJ\) \(mol^{- 1}\)
A hypothetical electrochemical cell is shown below.
A|A+(x M) || B+(y M)|B
The Emf measured is +0.20 V. The cell reaction is:
1. A+ + B → A + B+
2. A+ + e- → A ; B+ + e- → B
3. The cell reaction cannot be predicted.
4. A + B+ → A+ + B