Salt with the highest electrolytic conductivity in solution is : 

1. K2[PtCl6

2. [Co(NH3)3(NO2)3]

3. K4[Fe(CN)6

4. [Co(NH3)4]SO4

Subtopic:  Electrolytic & Electrochemical Cell |
 65%
Level 2: 60%+
Hints

If hydrogen electrodes dipped in two solutions of pH = 4 and pH = 6 are connected by a salt bridge, the emf of the resulting cell is -

1. 0.177 V               

2. 0.3 V               

3. 0.118 V             

4. 0.104 V

Subtopic:  Nernst Equation | Batteries & Salt Bridge |
 63%
Level 2: 60%+
Hints
Links

Calculate the emf of the given cell: 

Zn(s) | Zn+2 (0.1M) || Sn+2 (0.001M) | Sn(s)

(Given EZn+2/Zno=-0.76 V, ESn2+/Sno=-0.14 V)

1. 0.62 V

2. 0.56 V

3. 1.12 V

4. 0.31 V

Subtopic:  Electrode & Electrode Potential |
 59%
Level 3: 35%-60%
Hints
Links

advertisementadvertisement

For a reaction A(s) + 2B+  A2+ + 2B(s) ;  KC has been found to be 1012. The Ecell° is : 

1. 0.35 V 2. 0.71 V
3. 0.01 V 4. 1.36 V
Subtopic:  Relation between Emf, G, Kc & pH |
 79%
Level 2: 60%+
Hints
Links

Limiting molar conductivities, for the given solutions, are :

\(\lambda_{m}^{0} \left(\right. H_{2} S O_{4} \left.\right) = x\) \(S  c m^{2}\) \(m o l^{- 1}\)

\(\lambda_{m}^{0} \left(\right. K_{2} S O_{4} \left.\right) = y\) \(S  c m^{2}\) \(m o l^{- 1}\)

\(\lambda_{m}^{0} \left(\right. C H_{3} C O O K \left.\right) = z\) \(S  c m^{2}\) \(m o l^{- 1}\)

From the data given above, it can be concluded that \(\lambda_m^0 \) in (\(S\ cm^2\ mol^{-1}\)) for CH3COOH will be :
1. \(\mathrm{x-y+2z}\)       
2. \(\mathrm{x+y+z}\)          
3. \(\mathrm{x-y+z}\)       
4. \(\mathrm{{(x-y) \over 2}+z}\)          

Subtopic:  Conductance & Conductivity |
 70%
Level 2: 60%+
NEET - 2019
Hints
Links

The equilibrium constant of a 2 electron redox reaction at 298 K is 3.8 x 10-3. The cell potential Eo (in V) and the free energy change ∆Go (in kJ mol-1 ) for this equilibrium respectively, are -

1. -0.071, -13.8 2. -0.071, 13.8
3. 0.71, -13.8 4. 0.071, -13.8
Subtopic:  Relation between Emf, G, Kc & pH |
 64%
Level 2: 60%+
Hints

advertisementadvertisement

The specific conductance of 0.01 M solution of a weak monobasic acid is 0.20 x 10-3 S cm-1. The dissociation constant of the acid is-

[Given  ΛHA = 400 S cm2 mol-1]

1. \(5 \times 10^{-2}\) 2. \(2.5 \times 10^{-5}\)
3. \(5 \times 10^{-4}\) 4. \(2.2 \times 10^{-11}\)
Subtopic:  Conductance & Conductivity |
 59%
Level 3: 35%-60%
Hints
Links

For a cell involving one electron \(E_{cell}^{\ominus} = 0 . 59  V\) at 298 K. The equilibrium constant for the cell reaction is :
\(\mathrm{[Given~ that~ \frac {2.303 ~RT}{F} = 0.059 ~V~ at~ T = 298 K]}\)

1. \(1 . 0 \times \left(10\right)^{30}\) 2. \(1 . 0 \times \left(10\right)^{2}\)
3. \(1 . 0 \times \left(10\right)^{5}\) 4. \(1 . 0 \times \left(10\right)^{10}\)

Subtopic:  Relation between Emf, G, Kc & pH |
 72%
Level 2: 60%+
NEET - 2019
Hints
Links

Given the following cell reaction:
 \(\mathrm{2Fe^{3+}(aq) \ + \ 2I^{-}(aq)\rightarrow 2Fe^{2+}(aq) \ + \ I_{2}(aq)}\)

  \(E_{cell}^{o} \ = \ 0.24 \ V\) at \(298\) \(K\).
The standard Gibbs energy ∆rG of the cell reaction is:

[Given: \(F  = 96500\) \(C\) \(mol^{- 1}\)]

1. \(23 . 16\) \(kJ\) \(mol^{- 1}\)

2. \(- 46 . 32\) \(kJ\) \(mol^{- 1}\)

3. \(- 23 . 16\) \(kJ\) \(mol^{- 1}\)

4. \(46 . 32\) \(kJ\) \(mol^{- 1}\)

Subtopic:  Relation between Emf, G, Kc & pH |
 75%
Level 2: 60%+
NEET - 2019
Hints

advertisementadvertisement

A hypothetical electrochemical cell is shown below.
A|A+(x M) || B+(y M)|B
The Emf measured is +0.20 V. The cell reaction is:

1. A+ + B → A + B+

2.  A+ + e- → A ; B+ + e- → B

3. The cell reaction cannot be predicted.

4. A + B+ → A+ + B

Subtopic:  Electrochemical Series | Nernst Equation |
 76%
Level 2: 60%+
AIPMT - 2006
Hints
Links