If the reverse bias in a junction diode is changed from \(5~\text V\) to \(15~\text V\) then the value of current changes from \(38~\mu \text{A}\) to \(88~\mu \text{A}.\) The resistance of the junction diode will be:
1. \(4\times10^{5}\)
2. \(3\times10^{5}\)
3. \(2\times10^{5}\)
4. \(10^{6}\)
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
The zener breakdown will occur if:
1. | the impurity level is low. |
2. | the impurity level is high. |
3. | the impurity is less on the \(\mathrm{n\text-}\)side. |
4. | the impurity is less on the \(\mathrm{p\text-}\)side. |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
An LED is constructed from a \(\mathrm{p\text{-}n}\) junction diode using \(\mathrm{GaAsP}.\) The energy gap is \(1.9~\text{eV}.\) The wavelength of the light emitted will be equal to:
1. \(10.4 \times 10^{-26}~ \text{m}\)
2. \(654~ \text{nm}\)
3. \(654~ \text{m}\)
4. \(654\times 10^{-11}~\text{m}\)
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
1. | \(1.0 \times 10^6 ~\text{V/m}\) | 2. | \(1.0 \times 10^5 ~\text{V/m}\) |
3. | \(2.0 \times 10^5 ~\text{V/m}\) | 4. | \(2.0 \times 10^6 ~\text{V/m}\) |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
The figure shows a logic circuit with two inputs \(A\) and \(B\) and the output \(C\). The voltage waveforms across \(A\), \(B\), and \(C\) are as given. The logic circuit gate is:
1. \(\text{OR}\) gate
2. \(\text{NOR}\) gate
3. \(\text{AND}\) gate
4. \(\text{NAND}\) gate
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
1. | in the case of \(\mathrm{C},\) the valence band is not completely filled at absolute zero temperature. |
2. | in the case of \(\mathrm{C},\) the conduction band is partly filled even at absolute zero temperature. |
3. | the four bonding electrons in the case of \(\mathrm{C}\) lie in the second orbit, whereas in the case of \(\mathrm{Si},\) they lie in the third. |
4. | the four bonding electrons in the case of \(\mathrm{C}\) lie in the third orbit, whereas for \(\mathrm{Si},\) they lie in the fourth orbit. |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
1. | \(5~\text A\) | 2. | \(0.2~\text A\) |
3. | \(0.6~\text A\) | 4. | zero |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
1. | \(V_B\) increases, \(x\) decreases | 2. | \(V_B\) decreases, \(x\) increases |
3. | \(V_B\) increases, \(x\) increases | 4. | \(V_B\) decreases, \(x\) decreases |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.