If an electron and a positron annihilate, then the energy released is:
1. \(3.2\times 10^{-13}~\text{J}\)
2. \(1.6\times 10^{-13}~\text{J}\)
3. \(4.8\times 10^{-13}~\text{J}\)
4. \(6.4\times 10^{-13}~\text{J}\)

Subtopic:  Mass-Energy Equivalent |
 64%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


An atomic nucleus \({}_{90}^{232}\mathrm{Th}\) emits several \(\alpha\) and \(\beta\) radiations and finally reduces to \({}_{82}^{208}\mathrm{Pb}.\) It must have emitted:
1. \(4\alpha~\text{and}~2\beta\)
2. \(6\alpha~\text{and}~4\beta\)
3. \(8\alpha~\text{and}~24\beta\)
4. \(4\alpha~\text{and}~16\beta\)

Subtopic:  Types of Decay |
 85%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


In nuclear reaction \({}_{2}^{4}\mathrm{He}+ {}_{Z}^{A}\mathrm{X}\rightarrow {}_{Z+2}^{A+3}\mathrm{X}+\mathrm{B},\) \(\mathrm {B}\) denotes:
1. electron 2. positron
3. proton 4. neutron

Subtopic:  Types of Decay |
 66%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


advertisementadvertisement

The Binding energy per nucleon of \(^{7}_{3}\mathrm{Li}\) and \(^{4}_{2}\mathrm{He}\) nucleon are \(5.60~\text{MeV}\) and \(7.06~\text{MeV}\), respectively. In the nuclear reaction \(^{7}_{3}\mathrm{Li} + ^{1}_{1}\mathrm{H} \rightarrow ^{4}_{2}\mathrm{He} + ^{4}_{2}\mathrm{He} +Q\), the value of energy \(Q\) released is:
1. \(19.6~\text{MeV}\)
2. \(-2.4~\text{MeV}\)
3. \(8.4~\text{MeV}\)
4. \(17.3~\text{MeV}\)

Subtopic:  Nuclear Binding Energy |
 68%
From NCERT
AIPMT - 2014

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


The number of beta particles emitted by a radioactive substance is twice the number of alpha particles emitted by it. The resulting daughter is an:

1. isobar of a parent. 2. isomer of a parent.
3. isotone of a parent. 4. isotope of a parent.
Subtopic:  Types of Decay |
 67%
From NCERT
AIPMT - 2009

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


If in nuclear reactor using \(\mathrm{U}^{235}\) as fuel, the power output is \(4.8\) MW, the number of fissions per second is:
(Energy released per fission of \(\mathrm{U}^{235}=200\) MeV watts, \(1~\text{eV}= 1.6\times 10^{-19}~\text{J})\)
 
1. \(1.5\times 10^{17}\) 2. \(3\times 10^{19}\)
3. \(1.5\times 10^{25}\) 4. \(3\times 10^{25}\)
Subtopic:  Nuclear Energy |
 73%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


advertisementadvertisement

In the reaction \({}_{1}^{2}\mathrm{H}+ {}_{1}^{3}\mathrm{H}\rightarrow {}_{2}^{4}\mathrm{He}+ {}_{0}^{1}\mathrm{n}\)
if the binding energies of \({}_{1}^{2}\mathrm{H}, {}_{1}^{3}\mathrm{H},\) and \({}_{2}^{4}\mathrm{He}\) are respectively \(a,b,\) and \(c\) (in MeV), then the energy in (MeV) released in this reaction is:
1. \(c+a-b\)
2. \(c-a-b\)
3. \(a+b​​​​+c\)
4. \(a+b-c\)

Subtopic:  Nuclear Binding Energy |
 75%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


A nuclear reaction along with the masses of the particle taking part in it is as follows;
\(~~~~A ~~~~+~~~~~ B~~~~~ \rightarrow~~~~C ~~+~~~~ D~~~+~ ~Q~ ~\text{MeV}\\ \small{1.002~\text u~~~~~~~~ 1.004~\text u ~~~~~~~~~~~1.001~\text u~~~~~~1.003~\text u}\)
The energy \(Q\) liberated in the reaction is:
1. \(1.234~\text{MeV}\)
2. \(0.931~\text{MeV}\)
3. \(0.465~\text{MeV}\)
4. \(1.862~\text{MeV}\)

Subtopic:  Mass-Energy Equivalent |
 77%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


The binding energy per nucleon of deuterium and helium atom is \(1.1\) MeV and \(7.0\) MeV. If two deuterium nuclei fuse to form a helium atom, the energy released is:
1. \(19.2\) MeV
2. \(23.6\) MeV
3. \(26.9\) MeV 
4. \(13.9\) MeV
Subtopic:  Nuclear Binding Energy |
 77%
From NCERT
PMT - 2001

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


advertisementadvertisement

Which of the following is used as a moderator in nuclear reactors? 

1. Plutonium 

2. Cadmium 

3. Heavy water

4. Uranium 

Subtopic:  Nuclear Energy |
 80%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.