1. | \(3 \overrightarrow{F}\) | 2. | \(- \overrightarrow{F}\) |
3. | \(-3 \overrightarrow{F}\) | 4. | \( \overrightarrow{F}\) |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
A closed-loop \(PQRS\) carrying a current is placed in a uniform magnetic field. If the magnetic forces on segments \(PS,\) \(SR,\) and \(RQ\) are \(F_1, F_2~\text{and}~F_3\) respectively, and are in the plane of the paper and along the directions shown, then which of the following forces acts on the segment \(QP?\)
1. \(F_{3} - F_{1} - F_{2}\)
2. \(\sqrt{\left(F_{3} - F_{1}\right)^{2} + F_{2}^{2}}\)
3. \(\sqrt{\left(F_{3} - F_{1}\right)^{2} - F_{2}^{2}}\)
4. \(F_{3} - F_{1} + F_{2}\)
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
1. | \(-F\) | 2. | \(F\) |
3. | \(2F\) | 4. | \(-2F\) |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
A magnetic dipole is under the influence of two magnetic fields. The angle between the field directions is \(60^{\circ}\), and one of the fields has a magnitude of \(1.2\times 10^{-2}~\text{T}\). If the dipole comes to stable equilibrium at an angle of \(15^{\circ}\) with this field, what is the magnitude of the other field? \(\left[\text{Given} : \sin 15^ \circ = 0 . 26\right]\)
1. \( 7.29 \times10^{-3} ~\text{T} \)
2. \( 4.39 \times10^{-3} ~\text{T} \)
3. \( 6.18 \times10^{-3} ~\text{T} \)
4. \(5.37 \times10^{-3} ~\text{T} \)
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
If a square loop \({ABCD}\) carrying a current \(i\) is placed near and coplanar with a long straight conductor \({XY}\) carrying a current \(I,\) what will be the net force on the loop?
1. \(\dfrac{\mu_0Ii}{2\pi}\)
2. \(\dfrac{2\mu_0IiL}{3\pi}\)
3. \(\dfrac{\mu_0IiL}{2\pi}\)
4. \(\dfrac{2\mu_0Ii}{3\pi}\)
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
1. | \(B\) acts along the \(x\text-\)axis |
2. | \(B\) acts along the \(y\text-\)axis |
3. | \(B\) acts along the \(z\text-\)axis |
4. | \(B\) can act along any of the above direction for the net force to be zero |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
Two insulated rings, one of a slightly smaller diameter than the other, are suspended along their common diameter as shown. Initially, the planes of the rings are mutually perpendicular. What happens when a steady current is set up in each of them?
1. | the two rings rotate into a common plane. |
2. | the inner ring oscillates about its initial position. |
3. | the inner ring stays stationary while the outer one moves into the plane of the inner ring. |
4. | the outer ring stays stationary while the inner one moves into the plane of the outer ring. |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.