If the radius of a star is \(R\) and it acts as a black body, what would be the temperature of the star at which the rate of energy production is \(Q\)?
1. \(\frac{Q}{4\pi R^2\sigma}\)
2. \(\left(\frac{Q}{4\pi R^2\sigma}\right )^{\frac{-1}{2}}\)
3. \(\left(\frac{4\pi R^2 Q}{\sigma}\right )^{\frac{1}{4}}\)
4. \(\left(\frac{Q}{4\pi R^2 \sigma}\right)^{\frac{1}{4}}\)

Subtopic:  Stefan-Boltzmann Law |
 83%
From NCERT
AIPMT - 2012

To unlock all the explanations of this course, you need to be enrolled.

Hints
Links

To unlock all the explanations of this course, you need to be enrolled.


A spherical black body with a radius of 12 cm radiates 450-watt power at 500 K. If the radius were halved and the temperature doubled, the power radiated in watts would be:

1. 225 2. 450
3. 1000 4. 1800
Subtopic:  Stefan-Boltzmann Law |
 74%
From NCERT
NEET - 2017

To unlock all the explanations of this course, you need to be enrolled.

Hints
Links

To unlock all the explanations of this course, you need to be enrolled.


If the sun’s surface radiates heat at 6.3×107 Wm-then the temperature of the sun, assuming it to be a black body, will be:
σ=5.7×10-8 Wm-2K-4
1. 5.8×103 K
2. 8.5×103 K
3. 3.5×108 K
4. 5.3×108 K

Subtopic:  Stefan-Boltzmann Law |
 59%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints
Links

To unlock all the explanations of this course, you need to be enrolled.


advertisementadvertisement