1. | \(6 \hat{i}+2 \hat{j}-3 \hat{k} \) |
2. | \(-18 \hat{i}-13 \hat{j}+2 \hat{k} \) |
3. | \(4 \hat{i}-13 \hat{j}+6 \hat{k}\) |
4. | \(6 \hat{i}-2 \hat{j}+8 \hat{k}\) |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
The angle turned by a body undergoing circular motion depends on the time as given by the equation, \(\theta = \theta_{0} + \theta_{1} t + \theta_{2} t^{2}\). It can be deduced that the angular acceleration of the body is?
1. \(\theta_1\)
2. \(\theta_2\)
3. \(2\theta_1\)
4. \(2\theta_2\)
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
A car moves on a circular path such that its speed is given by \(v= Kt\), where \(K\) = constant and \(t\) is time. Also given: radius of the circular path is \(r\). The net acceleration of the car at time \(t\) will be:
1. \(\sqrt{K^{2} +\left(\frac{K^{2} t^{2}}{r}\right)^{2}}\)
2. \(2K\)
3. \(K\)
4. \(\sqrt{K^{2} + K^{2} t^{2}}\)
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
A stone tied to the end of a \(1\) m long string is whirled in a horizontal circle at a constant speed. If the stone makes \(22\) revolutions in \(44\) seconds, what is the magnitude and direction of acceleration of the stone?
1. | \(\pi^2 ~\text{ms}^{-2} \) and direction along the tangent to the circle. |
2. | \(\pi^2 ~\text{ms}^{-2} \) and direction along the radius towards the centre. |
3. | \(\frac{\pi^2}{4}~\text{ms}^{-2} \) and direction along the radius towards the centre. |
4. | \(\pi^2~\text{ms}^{-2} \) and direction along the radius away from the centre. |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
1. | parallel to the position vector. |
2. | at \(60^{\circ}\) with position vector. |
3. | parallel to the acceleration vector. |
4. | perpendicular to the position vector. |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
A car is moving at a speed of \(40\) m/s on a circular track of radius \(400\) m. This speed is increasing at the rate of \(3\) m/s2. The acceleration of the car is:
1. \(4\) m/s2
2. \(7\) m/s2
3. \(5\) m/s2
4. \(3\) m/s2
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
Certain neutron stars are believed to be rotating at about \(1\) rev/s. If such a star has a radius of \(20\) km, the acceleration of an object on the equator of the star will be:
1. | \(20 \times 10^8 ~\text{m/s}^2\) | 2. | \(8 \times 10^5 ~\text{m/s}^2\) |
3. | \(120 \times 10^5 ~\text{m/s}^2\) | 4. | \(4 \times 10^8 ~\text{m/s}^2\) |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
A particle moves with constant speed \(v\) along a circular path of radius \(r\) and completes the circle in time \(T\). The acceleration of the particle is:
1. \(2\pi v / T\)
2. \(2\pi r / T\)
3. \(2\pi r^2 / T\)
4. \(2\pi v^2 / T\)
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.