The breaking stress of a wire depends upon:
1. | material of the wire. |
2. | length of the wire. |
3. | radius of the wire. |
4. | shape of the cross-section. |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
Three wires \(A,B,C\) made of the same material and radius have different lengths. The graphs in the figure show the elongation-load variation. The longest wire is:
1. \(A\)
2. \(B\)
3. \(C\)
4. All of the above
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
1. | \(1:2\) | 2. | \(2:1\) |
3. | \(4:1\) | 4. | \(1:1\) |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
The area of cross-section of a wire of length \(1.1\) m is \(1\) mm2. It is loaded with mass of \(1\) kg. If Young's modulus of copper is \(1.1\times10^{11}\) N/m2, then the increase in length will be: (If \(g = 10~\text{m/s}^2)\)
1. | \(0.01\) mm | 2. | \(0.075\) mm |
3. | \(0.1\) mm | 4. | \(0.15\) mm |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
In the CGS system, Young's modulus of a steel wire is \(2\times 10^{12}~\text{dyne/cm}^2.\) To double the length of a wire of unit cross-section area, the force required is:
1. \(4\times 10^{6}~\text{dynes}\)
2. \(2\times 10^{12}~\text{dynes}\)
3. \(2\times 10^{12}~\text{newtons}\)
4. \(2\times 10^{8}~\text{dynes}\)
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
Steel and copper wires of the same length and area are stretched by the same weight one after the other. Young's modulus of steel and copper are \(2\times10^{11} ~\text{N/m}^2\) and \(1.2\times10^{11}~\text{N/m}^2.\) The ratio of increase in length is:
1. | \(2 \over 5\) | 2. | \(3 \over 5\) |
3. | \(5 \over 4\) | 4. | \(5 \over 2\) |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
Two wires of copper having length in the ratio of \(4:1\) and radii ratio of \(1:4\) are stretched by the same force. The ratio of longitudinal strain in the two will be:
1. | \(1:16\) | 2. | \(16:1\) |
3. | \(1:64\) | 4. | \(64:1\) |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
1. | \(\times\)strain | stress
2. | \(\frac{1}{2}\)\(\times\) stress\(\times\)strain |
3. | \(2\times\) stress\(\times\)strain |
4. | stress/strain |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
A \(5~\text{m}\) long wire is fixed to the ceiling. A weight of \(10~\text{kg}\) is hung at the lower end and is \(1~\text{m}\) above the floor. The wire was elongated by \(1~\text{mm}.\) The energy stored in the wire due to stretching is:
1. zero
2. \(0.05~\text J\)
3. \(100~\text J\)
4. \(500~\text J\)
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
The Young's modulus of a wire is \(Y.\) If the energy per unit volume is \(E,\) then the strain will be:
1. \(\sqrt{\frac{2E}{Y}}\)
2. \(\sqrt{2EY}\)
3. \(EY\)
4. \(\frac{E}{Y}\)
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.