The figure shows the orientation of two vectors \(u\) and \(v\) in the XY plane.
If \(u=a\hat{i}+b\hat{j}\) and \(v=p\hat{i}+q\hat{j}\).

      
Which of the following is correct?

1. \(a\) and \(p\) are positive while \(b\) and \(q\) are negative.
2. \(a,\) \(p\) and \(b\) are positive while \(q\) is negative.
3. \(a,\) \(q\) and \(b\) are positive while \(p\) is negative.
4.  \(a,\) \(b,\) \(p\) and \(q\) are all positive.

Subtopic:  Resolution of Vectors |
 65%
Level 2: 60%+

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


The component of a vector \(\vec{r}\) along the X-axis will have maximum value if:

1. \(\vec{r}\) is along the positive Y-axis.
2. \(\vec{r}\) is along the positive X-axis.
3. \(\vec{r}\) makes an angle of \(45^\circ\) with the X-axis.
4. \(\vec{r}\) is along the negative Y-axis.

Subtopic:  Resolution of Vectors |
 70%
Level 2: 60%+

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


Consider the quantities of pressure, power, energy, impulse, gravitational potential, electric charge, temperature, and area. Out of these, the only vector quantities are:

1. impulse, pressure, and area
2. impulse and area
3. area and gravitational potential
4. impulse and pressure

Subtopic:  Scalars & Vectors |
Level 3: 35%-60%

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
Three vectors \(A,B\) and \(C\) add up to zero. Then:
1. vector \((A\times B)\times C\) is not zero unless vectors \(B\) and \(C\) are parallel.
2. vector \((A\times B).C\) is not zero unless vectors \(B\) and \(C\) are parallel.
3. if vectors \(A,B\) and \(C\) define a plane, \((A\times B)\times C\) is in that plane.
4. \((A\times B). C= |A||B||C|\rightarrow C^2= A^2+B^2\)

The incorrect statement/s is/are:
1. (b), (d)
2. (a), (c)
3. (b), (c), (d)
4. (a), (b)

Subtopic:  Vector Product |
Level 3: 35%-60%

To unlock all the explanations of this course, you need to be enrolled.

Hints
Links

To unlock all the explanations of this course, you need to be enrolled.


premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

It is found that \(|\vec{A}+\vec{B}|=|\vec{A}|\). This necessarily implies:

1. \(\vec{B}=0\)
2. \(\vec{A},\) \(\vec{B}\) are antiparallel
3. \(\vec{A}\) and \(\vec{B}\) are perpendicular
4. \(\vec{A}.\vec{B}\leq0\)

Subtopic:  Scalar Product |
Level 4: Below 35%

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


Given below in Column-I are the relations between vectors \(a,\) \(b,\) and \(c\) and in Column-II are the orientations of \(a,\) \(b,\) and \(c\) in the \(xy\)-plane. Match the relation in Column-I to the correct orientations in Column-II.

Column-I Column-II
(a)  \(a + b = c\) (i)
(b) \(a- c = b\) (ii)
(c) \(b - a = c\) (iii)
(d) \(a + b + c = 0\) (iv)

Choose the correct option from the given table.

1. a-(ii), b-(iv), c-(iii), d-(i)
2. a-(i), b-(iii), c-(iv), d-(ii)
3. a-(iv), b-(iii), c-(i), d-(ii)
4. a-(iii), b-(iv), c-(i), d-(ii)
Subtopic:  Resultant of Vectors |
 71%
Level 2: 60%+

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


advertisementadvertisement

If \(|\vec{A}|=2\) and \(|\vec{B}|=4\), then match the relations in Column I with the angle \(\theta\) between \(\vec{A}\) and \(\vec{B}\) in Column II.

Column I Column II
(a) \(\vec{A}.\vec{B}=0\) (i) \(\theta=0^{\circ}\)
(b) \(\vec{A}.\vec{B}=8\) (ii) \(\theta=90^{\circ}\)
(c) \(\vec{A}.\vec{B}=4\) (iii) \(\theta=180^{\circ}\)
(d) \(\vec{A}.\vec{B}=-8\) (iv) \(\theta=60^{\circ}\)

Choose the correct answer from the options given below:

1. (a)–(iii), (b)-(ii), (c)-(i), (d)-(iv)
2. (a)–(ii), (b)-(i), (c)-(iv), (d)-(iii)
3. (a)–(ii), (b)-(iv), (c)-(iii), (d)-(i)
4. (a)–(iii), (b)-(i), (c)-(ii), (d)-(iv)
Subtopic:  Scalar Product |
 87%
Level 1: 80%+

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


If \(\left| \vec{A}\right|\) = \(2\) and \(\left| \vec{B}\right|\) = \(4,\) then match the relations in column-I with the angle \(\theta\) between \(\vec{A}\) and \(\vec{B}\) in column-II.     

Column-I Column-II
(A) \(\left| \vec{A}\times \vec{B}\right|\) \(=0\)  (p)  \(\theta=30^\circ\)
(B)\(\left| \vec{A}\times \vec{B}\right|\)\(=8\)   (q) \(\theta=45^\circ\)
(C) \(\left| \vec{A}\times \vec{B}\right|\) \(=4\)  (r)  \(\theta=90^\circ\)
(D) \(\left| \vec{A}\times \vec{B}\right|\) \(=4\sqrt2\) (s)  \(\theta=0^\circ\)
1. \(\mathrm{A(s), B(r), C(q), D(p)}\)
2. \(\mathrm{A(s), B(p), C(r), D(q)}\)
3. \(\mathrm{A(s), B(p), C(q), D(r)}\)
4. \(\mathrm{A(s), B(r), C(p), D(q)}\)
Subtopic:  Vector Product |
 86%
Level 1: 80%+

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


For two vectors \(\vec A\) and \(\vec B\), |\(\vec A\)+\(\vec B\)|=|\(\vec A\) - \(\vec B\)| is always true when:

(a) |\(\vec A\)| = |\(\vec B\)|  ≠ \(0\)
(b) \(\vec A\perp\vec B\)
(c) |\(\vec A\)| = |\(\vec B\)|  ≠ \(0\) and \(\vec A\) and \(\vec B\) are parallel or antiparallel.
(d) when either |\(\vec A\)| or |\(\vec B\)| is zero.

Choose the correct option from the given ones:
1. (a), (d)
2. (b), (c)
3. (b), (d)
4. (a), (b)
Subtopic:  Resultant of Vectors |
 55%
Level 3: 35%-60%

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


advertisementadvertisement

The angle between \(\mathrm{A}=\hat{\mathbf{i}}+\hat{\mathbf{j}}\) and \(\mathrm{B}=\hat{\mathbf{i}}-\hat{\mathbf{j}}\) is:
1. \(45^{\circ} \)
2. \(90^{\circ} \)
3. \(-45^{\circ} \)
4. \(180^{\circ}\)
Subtopic:  Scalar Product |
 78%
Level 2: 60%+

To unlock all the explanations of this course, you need to be enrolled.

Hints
Links

To unlock all the explanations of this course, you need to be enrolled.