premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
A hollow conducting sphere of radius \(1~\text{m}\) is given a positive charge of \(10~\mu\text{C}\). The electric field at the centre of the hollow sphere will be:
1. \(60\times10^{3}~\text{Vm}^{-1}\) 2. \(90\times10^{3}~\text{Vm}^{-1}\)
3. zero 4. infinite
Subtopic:  Gauss's Law |
 93%
Level 1: 80%+
AIPMT - 1998
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

A charge \(q\) is placed in a uniform electric field \(E.\) If it is released, then the kinetic energy of the charge after travelling distance \(y\) will be:

1. \(qEy\) 2. \(2qEy\)
3. qEy2 4. qEy
Subtopic:  Electric Field |
 78%
Level 2: 60%+
AIPMT - 1998
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The electric field at the equator of a dipole is \(E.\) If the strength of the dipole and distance are now doubled, then the electric field will be:

1. \(E/2\) 2. \(E/8\)
3. \(E/4\) 4. \(E\)
Subtopic:  Electric Dipole |
 69%
Level 2: 60%+
AIPMT - 1998
Hints
Links

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

A point \(Q\) lies on the perpendicular bisector of an electric dipole of dipole moment \(p.\) If the distance of \(Q\) from the dipole is \(r\) (much larger than the size of the dipole), then the electric field at \(Q\) is proportional to:
1. \(p^{2}\) and \(r^{-3}\)
2. \(p\) and \(r^{-2}\)
3. \(p^{-1}\) and \(r^{-2}\)
4. \(p\) and \(r^{-3}\)

Subtopic:  Electric Dipole |
 87%
Level 1: 80%+
AIPMT - 1998
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

In the Millikan oil drop experiment, a charged drop falls with a terminal velocity \(v.\) If an electric field \(E\) is applied vertically upwards it moves with terminal velocity \(2v\) in the upward direction. If the electric field reduces to \(\frac{E}{2}\) then its terminal velocity will be:
1. \(\frac{v}{2}\)
2. \(v\)
3. \(\frac{3v}{2}\)
4. \(2v\)

Subtopic:  Electric Field |
Level 3: 35%-60%
AIPMT - 1999
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The electric field at centre \(O\) of a semicircle of radius \(a\) having linear charge density \(\lambda\) is given by:

1. \(\dfrac{2\lambda}{\epsilon_0 a}\) 2. \(\dfrac{\lambda\pi}{\epsilon_0 a}\)
3. \(\dfrac{\lambda}{2\pi \epsilon_0 a}\) 4. \(\dfrac{\lambda}{\pi \epsilon_0 a}\)
Subtopic:  Electric Field |
 84%
Level 1: 80%+
AIPMT - 2000
Hints

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

If a charge \(Q\) is situated at the corner of a cube, the electric flux passing through all six faces of the cube is:

1. \(\frac{Q}{6\varepsilon_0}\) 2. \(\frac{Q}{8\varepsilon_0}\)
3. \(\frac{Q}{\varepsilon_0}\) 4. \(\frac{Q}{2\varepsilon_0}\)

Subtopic:  Gauss's Law |
 69%
Level 2: 60%+
AIPMT - 2000
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

Who evaluated the mass of electron indirectly with help of charge:
1. Thomson
2. Millikan
3. Rutherford
4. Newton

Subtopic:  Electric Charge |
 79%
Level 2: 60%+
AIPMT - 2000
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
If a charge \(Q~\mu\text{C}\) is placed at the centre of the cube, the flux (In SI unit) coming out from any surface will be:
1. \(\dfrac{Q}{6\varepsilon_0}\times10^{-6}\) 2. \(\dfrac{Q}{6\varepsilon_0}\times10^{-3}\)
3. \(\dfrac{Q}{2\varepsilon_0}\) 4. \(\dfrac{Q}{8\varepsilon_0}\)
Subtopic:  Gauss's Law |
 89%
Level 1: 80%+
AIPMT - 2001
Hints
Links

advertisementadvertisement

A dipole with moment \(\vec p\) is placed in a uniform electric field \(\vec E\). The torque acting on the dipole is given by:
1. \(\vec{\tau }=\vec{p}\cdot \vec{E}\)
2. \(\vec{\tau }=\vec{p} \times \vec{E}\)
3. \(\vec{\tau }=\vec{p}+ \vec{E}\)
4. \(\vec{\tau }=\vec{p}- \vec{E} \)

Subtopic:  Electric Dipole |
 91%
Level 1: 80%+
AIPMT - 2001
Hints
Links