a. | \( \small{n=3, \ell=2, m=0, s=\frac{-1}{2} \,\& \ \,n=3, \ell=2, m=-1, s=\frac{+1}{2}}\) |
b. | \(\small{n=2, \ell=1, m=1 , \ s=\frac{-1}{2}\, \&\, \ n=3, \ell=1, m=1 \mathrm{~s}=\frac{+1}{2}}\) |
c. | \(\small{n=4, \ell=2, m=-1, s=\frac{1}{2}\, \&\, \ n=3, \ell=2, m=-1, s=\frac{1}{2}}\) |
(i). | n (principal quantum number) can have values 1, 2, 3, 4, ....... |
(ii). | The number of orbitals for a given value of l is (2l+1). |
(iii). | The value of spin quantum numbers is always \(\pm\frac12\). |
(iv). | For l=5, the total number of orbitals is 9. |
The plots of radial distribution functions for various orbitals of hydrogen atom against 'r' are given below:
a.
b.
c.
d.
The correct plot for 3s orbital is:
1. (B)
2. (A)
3. (D)
4. (C)
The graph between and r (radial distance) is shown below. This represents:
1. | 3s orbital | 2. | 2s orbital |
3. | 2p orbital | 4. | 1s orbital |
The correct set of four quantum numbers for the valence electrons of rubidium atom (Z = 37) is -
1. 5, 1, 0 +
2. 5, 1, 1 +
3. 5, 0, 1 +
4. 5, 0, 0 +
Consider the ground state of Cr atom (Z=24). The numbers of electrons with the azimuthal quantum numbers, l=1 and 2 are, respectively:
1. 12 and 4
2. 12 and 5
3. 16 and 4
4. 16 and 5
n | l | m | |
(a). | 2 | 2 | 1 |
(b). | 3 | 2 | -2 |
(c). | 3 | 2 | -1 |
(d). | 2 | 1 | -1 |