Find the thickness of the wire. The least count is \(0.01\) mm. The main scale reads: (in mm)
            

1. \(7.62\)
2. \(7.63\)
3. \(7.64\)
4. \(7.65\)

Subtopic:  Measurement & Measuring Devices |
Level 3: 35%-60%
Hints
Links

Two resistors \(R_1 = (3.0\pm0.3)~\Omega\) and \(R_2 = (5.0 \pm0.1)~\Omega\) are connected in parallel. The equivalent resistance, \(R_{eq}\), will be:
Hint: \({1 \over R_{eq}} = {1 \over R_{1}} + {1 \over R_{2}} \)

1. \(1.9\pm0.07~\Omega\) 2. \(1.9\pm0.1~\Omega\)
3. \(2.9\pm0.2~\Omega\) 4. \(2.9\pm0.3~\Omega\)
Subtopic:  Errors |
 52%
Level 3: 35%-60%
Hints
Links

The pitch of a screw gauge is \(1~\)mm and there are \(100\) divisions on the circular scale. While measuring the diameter of a wire, the linear scale reads \(1\) mm and \(47\)th division on the circular scale coincides with the reference line. The length of the wire is \(5.6\) cm. Curved surface area (in cm2) of the wire in appropriate number of significant figures will be:

1. \(2.4\) cm2

2. \(2.56\) cm2

3. \(2.6\) cm2

4. \(2.8\) cm2

Subtopic:  Measurement & Measuring Devices |
 55%
Level 3: 35%-60%
Hints
Links

advertisementadvertisement

If the error in the measurement of the radius of a sphere is \(2\%\), then the error in the determination of the volume of the sphere will be:

1. \(4\%\) 2. \(6\%\)
3. \(8\%\) 4. \(2\%\)
Subtopic:  Errors |
 84%
Level 1: 80%+
NEET - 2008
Hints
Links

If the dimensions of a physical quantity are given by \(\left[M^aL^bT^c\right],\) then the physical quantity will be:
1. pressure if \(a=1, ~b=-1,~c=-2\)
2. velocity if \(a=1,~b=0,~c=-1\)
3. acceleration if \(a=1,~b=1,~c=-2\)
4. force if \(a=0, ~b= -1,~c=-2\)
Subtopic:  Dimensions |
 84%
Level 1: 80%+
NEET - 2009
Hints
Links

If energy (\(E\)), velocity (\(v\)) and time (\(T\)) are chosen as the fundamental quantities, the dimensional formula of surface tension will be:
1. \( {\left[E v^{-2} T^{-1}\right]} \)
2. \( {\left[E v^{-1} T^{-2}\right]} \)
3. \( {\left[E v^{-2} T^{-2}\right]} \)
4. \({\left[E^{-2} v^{-1} T^{-3}\right]}\)

Subtopic:  Dimensions |
 72%
Level 2: 60%+
NEET - 2015
Hints
Links

advertisementadvertisement

A small steel ball of radius \(r\) is allowed to fall under gravity through a column of a viscous liquid of coefficient of viscosity \(\eta\). After some time the velocity of the ball attains a constant value known as terminal velocity \(v_T\). The terminal velocity depends on \((\text{i})\) the mass of the ball \(m\) \((\text{ii})\) \(\eta\) \((\text{iii})\) \(r\) and \((\text{iv})\) acceleration due to gravity \(g\). Which of the following relations is dimensionally correct:

1. \(v_T \propto \frac{mg}{\eta r}\) 2. \(v_T \propto \frac{\eta r}{mg}\)
3. \(v_T \propto \eta rmg\) 4. \(v_T \propto \frac{mgr}{\eta }\)
Subtopic:  Dimensions |
 63%
Level 2: 60%+
PMT - 1992
Hints
Links

The quantities \(A\) and \(B\) are related by the relation, \(m= \frac{A}{B}\), where \(m\) is the linear density and \(A\) is the force. The dimensions of \(B\) are of:

1. Pressure 2. Work
3. Latent heat 4. None of the above
Subtopic:  Dimensions |
Level 3: 35%-60%
Hints
Links

The frequency of vibration \(f\) of a mass \(m\) suspended from a spring of spring constant \(k\) is given by a relation of type \(f= Cm^{x}k^{y}\); where \(C\) is a dimensionless quantity. The values of \(x\) and \(y\) will be:
1. \(x=\frac{1}{2},~y= \frac{1}{2}\)
2. \(x=-\frac{1}{2},~y= -\frac{1}{2}\)
3. \(x=\frac{1}{2},~y= -\frac{1}{2}\)
4. \(x=-\frac{1}{2},~y= \frac{1}{2}\)

Subtopic:  Dimensions |
 68%
Level 2: 60%+
PMT - 1990
Hints
Links

advertisementadvertisement

If \(\int \frac{d x}{\sqrt{a^2-x^2}}=a^n \sin ^{-1} \frac{x}{a}\) is dimensionally correct, then the value of \(n\) will be:

1. \(1\) 2. \(\text{zero}\)
3. \(\text-1\) 4. \(2\)
Subtopic:  Dimensions |
 64%
Level 2: 60%+
Hints
Links