The ratio of the shortest wavelength of Balmer series to the shortest wavelength of Lyman series for hydrogen atom is :
1. \(2:1\)
2. \(1:4\)
3. \(1:2\)
4. \(4:1\)

Subtopic:  Spectral Series |
Please attempt this question first.
Hints
Please attempt this question first.

The longest wavelength associated with Paschen series is : (Given \(R_H=1.097 \times 10^7\) SI unit)
1. \(2.973 \times 10^{-6} \mathrm{~m}\)
2. \(3.646 \times 10^{-6} \mathrm{~m}\)
3. \(1.094 \times 10^{-6} \mathrm{~m}\)
4. \(1.876 \times 10^{-6} \mathrm{~m}\)
 
Subtopic:  Spectral Series |
From NCERT
Please attempt this question first.
Hints
Please attempt this question first.

A hydrogen atom in ground state is given an energy of 10.2 eV. How many spectral lines will be emitted due to transition of electrons ?
1. 10
2. 3
3. 1
4. 6
Subtopic:  Spectral Series |
Please attempt this question first.
Hints
Please attempt this question first.

advertisementadvertisement

According to Bohr's theory, the moment of momentum of an electron revolving in 4th orbit of hydrogen atom is –
1. \(\frac{\mathrm{h}}{2 \pi}\)
2. \(8 \frac{\mathrm{~h}}{\pi}\)
3. \(2 \frac{\mathrm{~h}}{\pi}\)
4. \(\frac{\mathbf{h}}{\pi}\)
Subtopic:  Bohr's Model of Atom |
 100%
Please attempt this question first.
Hints
Please attempt this question first.

The acceleration of an electron in the first orbit of the hydrogen atom \({(n = 1})\) is:
1. \(\frac{h^2}{\pi^2m^2r^3}\)
2. \(\frac{h^2}{4\pi^2m^2r^3}\)
3. \(\frac{h^2}{4\pi m^2r^3}\)
4. \(\frac{h^2}{8\pi^2m^2r^3}\)
Subtopic:  Bohr's Model of Atom |
 67%
From NCERT
Please attempt this question first.
Hints
Please attempt this question first.

Both the nucleus and the atom of some element are in their respective first excited states. They get deexcited by emitting photons of wavelengths \(\lambda_ N, \lambda _A\) respectively. The ratio of their wavelength \(\frac{\lambda_N}{\lambda_A}\) is closest to:
1. \(10^{-1}\)
2. \(10^{-6}\)
3. \(10 \)
4. \(10^{-10}\)
Subtopic:  Spectral Series |
From NCERT
JEE
Please attempt this question first.
Hints

advertisementadvertisement

The de-Broglie wavelength \((\lambda _B)\) associated with the electron orbiting in the second excited state of a hydrogen atom is related to that in the ground state \((\lambda _G)\) by:
1. \( \lambda _B = 3\lambda _G\)
2. \( \lambda _B = 2\lambda _G\)
3. \( \lambda _B = 3\lambda _{G/3}\)
4. \( \lambda _B = 3\lambda _{G/2}\)
Subtopic:  Bohr's Model of Atom |
 69%
From NCERT
Please attempt this question first.
Hints
Please attempt this question first.

According to Bohr's theory, the time-averaged magnetic field at the centre (i.e. nucleus) of a hydrogen atom due to the motion of electrons in the \({n}^\text{th}\) orbit is proportional to:
(\(n=\) principal quantum number)
1. \({n}^{-5}\)
2. \({n}^{-4}\)
3. \({n}^{-3}\)
4. \({n}^{-2}\)
Subtopic:  Bohr's Model of Atom |
 59%
From NCERT
JEE
Please attempt this question first.
Hints

The energy required to remove the electron from a singly ionized helium atom is \(2.2\) times the energy required to remove an electron from a helium atom. The total energy required to ionize the helium atom completely is:
1. \(34~\text{eV}\)
2. \(20~\text{eV}\)
3. \(79~\text{eV}\)
4. \(109~\text{eV}\)
Subtopic:  Bohr's Model of Atom |
 57%
From NCERT
Please attempt this question first.
Hints
Please attempt this question first.

advertisementadvertisement

If one were to apply the Bohr model to a particle of mass '\(m\)' and charge '\(q\)' moving in a plane under the influence of a magnetic field '\(B\)', the energy of the charged particle in the \(n^\text{th}\) level will be:
1. \({n}\left(\frac{{hqB}}{4 \pi {m}}\right) \)
2. \({n}\left(\frac{{hqB}}{\pi{m}}\right)\)
3. \({n}\left(\frac{{hqB}}{2 \pi {m}}\right)\)
4. \({n}\left(\frac{{hqB}}{8 \pi {m}}\right)\)
Subtopic:  Bohr's Model of Atom |
 59%
From NCERT
JEE
Please attempt this question first.
Hints
Please attempt this question first.