In a regular octagon \({ABCDEFGH},\) all sides are equal in length. The position vector of point \(A\) with respect to the center \(O\) of the octagon is given by: \(\overrightarrow{{AO}}=2 \hat{{i}}+3 \hat{{j}}-4 \hat{{k}}.\)
What is the value of the vector sum: \(\overrightarrow{{AB}}+\overrightarrow{{AC}}+\overrightarrow{{AD}}+\overrightarrow{{AE}}+\overrightarrow{{AF}}+\overrightarrow{{AG}}+\overrightarrow{{AH}} ~\text{?}\)
1. \( -16 \hat{i}-24 \hat{j}+32 \hat{k} \)
2. \( 16 \hat{i}+24 \hat{j}-32 \hat{k} \)
3. \( 16 \hat{i}+24 \hat{j}+32 \hat{k} \)
4. \(16 \hat{i}-24 \hat{j}+32 \hat{k} \)
1. | \(\dfrac A2\) | 2. | \(\dfrac {\sqrt {5}A} { 2}\) |
3. | \(\dfrac {3A} {2}\) | 4. | \(\dfrac {5A} {2}\) |