If a particle in SHM has a time period of \(0.1\) s and an amplitude of \(6\) cm, then its maximum velocity will be:
1. \(120 \pi\) cm/s
2. \(0.6 \pi\) cm/s
3. \(\pi\) cm/s
4. \(6\) cm/s
1. | \(A_1 \omega_1=A_2 \omega_2=A_3 \omega_3\) |
2. | \(A_1 \omega_1^2=A_2 \omega_2^2=A_3 \omega_3^2\) |
3. | \(A_1^2 \omega_1=A_2^2 \omega_2=A_3^2 \omega_3\) |
4. | \(A_1^2 \omega_1^2=A_2^2 \omega_2^2=A^2\) |
1. | The value of \(a\) is zero whatever may be the value of \(v\). |
2. | When \(v\) is zero, \(a\) is zero. |
3. | When \(v\) is maximum, \(a\) is zero. |
4. | When \(v\) is maximum, \(a\) is maximum. |
1. | Spring constant | 2. | Angular frequency |
3. | (Angular frequency)2 | 4. | Restoring force |
1. | \(2 \pi \over K\) | 2. | \(2 \pi K\) |
3. | \(2 \pi \over \sqrt{K}\) | 4. | \(2 \pi \sqrt{K}\) |
1. | The phase of the oscillator is the same at \(t = 0~\text{s}~\text{and}~t = 2~\text{s}\). |
2. | The phase of the oscillator is the same at \(t = 2~\text{s}~\text{and}~t = 6~\text{s}\). |
3. | The phase of the oscillator is the same at \(t = 1~\text{s}~\text{and}~t = 7~\text{s}\). |
4. | The phase of the oscillator is the same at \(t = 1~\text{s}~\text{and}~t = 5~\text{s}\). |
1. | \(1,2~\text{and}~4\) | 2. | \(1~\text{and}~3\) |
3. | \(2~\text{and}~4\) | 4. | \(3~\text{and}~4\) |
1. | the motion is oscillatory but not SHM. |
2. | the motion is SHM with an amplitude \(a\sqrt{2}\). |
3. | the motion is SHM with an amplitude \(\sqrt{2}\). |
4. | the motion is SHM with an amplitude \(a\). |
1. \(25~\text{Hz}\)
2. \(50~\text{Hz}\)
3. \(12.25~\text{Hz}\)
4. \(33.3~\text{Hz}\)
Which of the following relationships between the acceleration \(a\) and the displacement \(x\) of a particle involves simple harmonic motion?
1. \(a = 0 . 7 x\)
2. \(a = - 200 x^{2} \)
3. \(a = - 10 x\)
4. \(a = 100 x^{3}\)