If a particle has negative velocity and negative acceleration, its speed:
1. increases
2. decreases
3. remains the same
4. zero
A particle starts from rest (with constant acceleration) and acquires velocity \(20\) m/s in \(5\) s. The distance travelled by the particle in the next \(2\) s will be:
1. | \(50\) m | 2. | \(48\) m |
3. | \(100\) m | 4. | \(150\) m |
A drunkard walking in a narrow lane takes \(5\) steps forward and \(3\) steps backward, followed again by \(5\) steps forward and \(3\) steps backward, and so on. Each step is \(1\) m long and requires \(1\) s. There is a pit on the road \(13\) m away from the starting point. The drunkard will fall into the pit after:
1. \(37\) s
2. \(31\) s
3. \(29\) s
4. \(33\) s
The position-time \((x\text-t)\) graphs for two children \(A\) and \(B\) returning from their school \(O\) to their homes \(P\) and \(Q\) respectively are shown in the graph.
Choose the incorrect statement:
1. | \(B\) reaches home faster than \(A.\) |
2. | \(B\) overtakes \(A\) on the road twice. |
3. | \(B\) walks faster than \(A.\) |
4. | \(A\) lives closer to the school than \(B.\) |
A car moving along a straight highway at a speed of \(126~\text{km/h}\) is brought to a stop within a distance of \(200~\text{m}.\) How long does it take for the car to stop?
1. \(10.2~\text{s}\)
2. \(9.6~\text{s}\)
3. \(11.4~\text{s}\)
4. \(6.7~\text{s}\)
The figure gives the \((x\text-t)\) plot of a particle in a one-dimensional motion. Three different equal intervals of time are shown. The signs of average velocity for each of the intervals \(1,\) \(2\) and \(3,\) respectively are:
1. | \(-,-,+\) | 2. | \(+,-,+\) |
3. | \(-,+,+\) | 4. | \(+,+,-\) |
The figure gives a speed-time graph of a particle in motion along the same direction. Three equal intervals of time are shown. In which interval is the average acceleration greatest in magnitude?
1. | Interval 2 | 2. | Interval 1 |
3. | Interval 3 | 4. | Equal in all intervals |
A boy standing on a stationary lift (open from above) throws a ball upwards with the maximum initial speed he can, equal to \(49~\text{ms}^{-1}.\) How much time does the ball take to return to his hands?
1. | \(5\) s | 2. | \(10\) s |
3. | \(15\) s | 4. | \(7\) s |
A passenger arriving in a new town wishes to go from the station to a hotel located \(10~\text{km}\) away on a straight road from the station. A dishonest cabman takes him along a circuitous path \(23~\text{km}\) long and reaches the hotel in \(28~\text{min}.\) The average speed of the taxi is:
1. \(30~\text{km/h}\)
2. \(49.3~\text{km/h}\)
3. \(55.6~\text{km/h}\)
4. \(60~\text{km/h}\)
1. | zero velocity. | 2. | zero acceleration. |
3. | non-zero velocity. | 4. | non-zero acceleration. |