If a body is charged by rubbing it, its weight:

1. remains precisely constant.
2. increases slightly.
3. decreases slightly.
4. may increase slightly or may decrease slightly.

Subtopic:  Electric Charge |
 64%
Level 2: 60%+
Hints
Links

An electric dipole is placed in a uniform electric field. The net electric force on the dipole:

1. is always zero.
2. depends on the orientation of the dipole.
3. can never be zero.
4. depends on the strength of the dipole.
Subtopic:  Electric Dipole |
 73%
Level 2: 60%+
Hints
Links

Given below are four statements: 

(a) The total charge of the universe is constant.
(b) The total positive charge of the universe is constant.
(c) The total negative charge of the universe is constant.
(d) The total number of charged particles in the universe is constant.


Choose the correct option:

1. (a) only  2. (b), (c) 
3. (c), (d)  4. (a), (d) 
Subtopic:  Electric Charge |
 65%
Level 2: 60%+
Hints
Links

advertisementadvertisement

The figure shows some of the electric field lines corresponding to an electric field. The figure suggests that:


          
1. \(E_A>E_B>E_C\)
2. \(E_A=E_B=E_C\)
3. \(E_A=E_C>E_B\)
4. \(E_A=E_C<E_B\)

Subtopic:  Electric Field |
 78%
Level 2: 60%+
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
Three charges \(q,~q,~-q\)  are placed at the three corners of an equilateral triangle \(ABC\), of side \(a.\)
              
The mid-point of side \(AB\) is \(P\) while the circumcenter of \(ABC\) is \(O\). Let the electric field at \(P\) be \(E_p\) and that at \(O\) be \(E_O.\)
Then, \(E_O:E_P=\)
 
1. \(\dfrac{2}{9}\) 2. \(\dfrac{4}{9}\)
3. \(\dfrac{9}{2}\) 4. \(\dfrac{9}{4}\)
Subtopic:  Electric Field |
Level 3: 35%-60%
Hints

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
Identical point charges (\(q\) each), are placed at the eight corners of a cube of side \(a.\) When one of the charges is removed, the electric field at the center becomes \(E_c.\)
Now, identical point charges (same magnitude \(q\) each), are placed at the four corners of a square of side \(a.\) When one of the charges is removed, the electric field at the center becomes \(E_s.\) Then,
1. \(\dfrac{E_s}{2}=\dfrac{E_C}{3}\) 2. \(\dfrac{E_s}{3}=\dfrac{E_C}{2}\)
3. \(\dfrac{E_s}{\sqrt2}=\dfrac{E_C}{\sqrt3}\) 4. \(\dfrac{E_s}{\sqrt3}=\dfrac{E_C}{\sqrt2}\)
Subtopic:  Electric Field |
 62%
Level 2: 60%+
Hints

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
Which of the following field configurations is/are possible?
Note: \(A,B,C\) are conductors. Other charges may be present in the vicinity.
1. I, III 2. II
3. I, II, III 4. none of I, II, III
Subtopic:  Electric Field |
Level 3: 35%-60%
Hints

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
Equal and opposite charges are placed at the two vertices of an equilateral triangle, giving a dipole moment \(p.\) A small dipole \(p'\) is placed at the third vertex, parallel to the previous dipole. If the electric fields due to both dipoles \(p,~p',\) at the mid-point of the dipole \(p,\) are equal, then \(\dfrac{p'}{p}\) equals:
1. \(3\sqrt3\) 2. \(\dfrac{3\sqrt3}{2}\)
3. \(\sqrt3\) 4. \(\dfrac{\sqrt3}{2}\)
Subtopic:  Electric Dipole |
Level 3: 35%-60%
Hints

Four charges \(q,q\) and \(-q,-q\) are placed at the four vertices of a square of side \(a,\) with like charges across a diagonal. The electric field at the centre of the square is: 
\(\left(k=\dfrac{1}{4\pi\varepsilon_0}\right)\)
1. zero

2. \(\sqrt2\dfrac{kq}{a^2}\)

3. \(2\dfrac{kq}{a^2}\)

4. \(4\dfrac{kq}{a^2}\)
Subtopic:  Electric Field |
 81%
Level 1: 80%+
Hints

advertisementadvertisement

Two point charges \({-q}\) and \({+q}\) are placed at a distance of \({L},\) as shown in the figure.
          
The magnitude of electric field intensity at a distance \({R}~(R \gg L )\) varies as:
1. \(\dfrac{1}{{R}^{6}}\) 2. \(\dfrac{1}{{R}^{2}}\)
3. \(\dfrac{1}{{R}^{3}}\) 4. \(\dfrac{1}{{R}^{4}}\)
Subtopic:  Electric Dipole |
 71%
Level 2: 60%+
NEET - 2022
Hints