1. | \(\left[MLT^{-2}\right]\) | 2. | \(\left[ML^{-1}T^{2}\right]\) |
3. | \(\left[ML^{-1}T^{-2}\right]\) | 4. | \(\left[MLT^{2}\right]\) |
The measurements are made as \(18.425\) cm, \(7.21\) cm, and \(5.0\) cm. The addition of these measurements should be written as:
1. \(30.635\) cm
2. \(30.64\) cm
3. \(30.63\) cm
4. \(30.6\) cm
A physical parameter '\(a\)' can be determined by measuring the parameters \(b\), and using the relation, \(a= \dfrac{b^{\alpha}c^{\beta}}{d^{\gamma}e^{\delta}}.\) If the maximum errors in the measurement of \(b, ~c, ~d,~\text{and}~e\) are \(b_1\%,~c_1\%,~d_1\%~\text{and}~e_1\%\)
1. \((b_1+c_1+d_1+e_1)\%\)
2. \((b_1+c_1-d_1-e_1)\%\)
3. \((\alpha b_1+\beta c_1-\gamma d_1-\delta e_1)\%\)
4. \((\alpha b_1+\beta c_1+\gamma d_1+\delta e_1)\%\)
1. | Time | 2. | Mass |
3. | Distance | 4. | Energy |
In \(S= a+bt+ct^2,~S\) is measured in metres and \(t\) in seconds. The unit of \(c\) will be:
1. | none | 2. | \(\text{m}\) |
3. | \(\text{ms}^{-1}\) | 4. | \(\text{ms}^{-2}\) |
Temperature can be expressed as a derived quantity in terms of any of the following:
1. | length and mass | 2. | mass and time |
3. | length, mass, and time | 4. | none of the above |
If \(u_1\) and \(u_2\) are the units selected in two systems of measurement and \(n_1\) and \(n_2\) are their numerical values, then:
1. | \(n_1u_1=n_2u_2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \) |
2. | \(n_1u_1+n_2u_2=0\) |
3. | \(n_1n_2=u_1u_2\) |
4. | \((n_1+u_1)=(n_2+u_2)\) |
Given the equation \(\left(P+\frac{a}{V^2}\right)(V-b)=\text {constant}\). The units of \(a\) will be: (where \(P\) is pressure and \(V\) is volume)
1. \(\text{dyne} \times \text{cm}^5\)
2. \(\text{dyne} \times \text{cm}^4\)
3. \(\text{dyne} / \text{cm}^3\)
4. \(\text{dyne} / \text{cm}^2\)
The dimensions of a couple are:
1. | \(\left[ML^2T^{-2}\right]\) | 2. | \(\left[MLT^{-2}\right]\) |
3. | \(\left[ML^{-1}T^{-3}\right]\) | 4. | \(\left[ML^{-2}T^{-2}\right]\) |
1. | \([MLT^{-2}]\) | 2. | \([MLT^{-1}]\) |
3. | \([ML^2T^{-1}]\) | 4. | \([M^2LT^{-1}]\) |