1. | \(- 2 nβ^{2} x^{- 2 n - 1}\) | 2. | \(- 2 nβ^{2} x^{- 4 n - 1}\) |
3. | \(- 2 \beta^{2} x^{- 2 n + 1}\) | 4. | \(- 2 nβ^{2} x^{- 4 n + 1}\) |
A particle is moving such that its position coordinates (x, y) are (\(2\) m, \(3\) m) at time \(t=0,\) (\(6\) m,\(7\) m) at time \(t=2\) s, and (\(13\) m, \(14\) m) at time \(t=\) \(5\) s. The average velocity vector \(\vec{v}_{avg}\) from \(t=\) 0 to \(t=\) \(5\) s is:
1. \({1 \over 5} (13 \hat{i} + 14 \hat{j})\)
2. \({7 \over 3} (\hat{i} + \hat{j})\)
3. \(2 (\hat{i} + \hat{j})\)
4. \({11 \over 5} (\hat{i} + \hat{j})\)
A stone falls freely under gravity. It covers distances \(h_1,~h_2\) and \(h_3\) in the first \(5\) seconds, the next \(5\) seconds and the next \(5\) seconds respectively. The relation between \(h_1,~h_2\) and \(h_3\) is:
1. | \(h_1=\frac{h_2}{3}=\frac{h_3}{5}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \) |
2. | \(h_2=3h_1\) and \(h_3=3h_2\) |
3. | \(h_1=h_2=h_3\) |
4. | \(h_1=2h_2=3h_3\) |
A particle has initial velocity \(\left(2 \hat{i} + 3 \hat{j}\right)\) and acceleration \(\left(0 . 3 \hat{i} + 0 . 2 \hat{j}\right)\). The magnitude of velocity after \(10\) s will be:
1. \(9 \sqrt{2}~ \text{units}\)The motion of a particle along a straight line is described by the equation \(x = 8+12t-t^3\) where \(x \) is in meter and \(t\) in seconds. The retardation of the particle, when its velocity becomes zero, is:
1. \(24\) ms-2
2. zero
3. \(6\) ms-2
4. \(12\) ms-2
1. | 20 m/s | 2. | 40 m/s |
3. | 5 m/s | 4. | 10 m/s |
A particle covers half of its total distance with speed ν1 and the rest half distance with speed ν2.
Its average speed during the complete journey is:
1.
2.
3.
4.
A ball is dropped from a high-rise platform at \(t=0\) starting from rest. After \(6\) seconds, another ball is thrown downwards from the same platform with speed \(v\). The two balls meet after \(18\) seconds. What is the value of \(v\)?
1. | \(75\) ms-1 | 2. | \(55\) ms-1 |
3. | \(40\) ms-1 | 4. | \(60\) ms-1 |
A particle moves a distance \(x\) in time \(t\) according to equation \(x=(t+5)^{-1}.\) The acceleration of the particle is proportional to:
1. (velocity)\(3/2\)
2. (distance)\(2\)
3. (distance)\(-2\)
4. (velocity)\(2/3\)