1. | (A), (B) and (C) only |
2. | (B), (C) and (D) only |
3. | (A), (B) and (E) only |
4. | (C), (D) and (E) only |
1. | \(2\sqrt{A}\) | 2. | \(\dfrac{A}{2}\) |
3. | \(\dfrac{\mathrm{A}}{\sqrt{2}}\) | 4. | \(A\sqrt{2}\) |
1. | B, C, and D only | 2. | A, B, and C only |
3. | A, C, and D only | 4. | C and D only |
1. | \(-\dfrac{\pi^2}{16} ~\text{ms}^{-2}\) | 2. | \(\dfrac{\pi^2}{8}~ \text{ms}^{-2}\) |
3. | \(-\dfrac{\pi^2}{8} ~\text{ms}^{-2}\) | 4. | \(\dfrac{\pi^2}{16} ~\text{ms}^{-2}\) |
1. | \(2\sqrt3\) s | 2. | \(\dfrac{2}{\sqrt3}\) s |
3. | \(2\) s | 4. | \(\dfrac{\sqrt 3}{2}\) s |
1. | \(8\) | 2. | \(11\) |
3. | \(9\) | 4. | \(10\) |
During simple harmonic motion of a body, the energy at the extreme position is:
1. | both kinetic and potential |
2. | is always zero |
3. | purely kinetic |
4. | purely potential |
1. | \(e^{-\omega t}\) | 2. | \(\text{sin}\omega t\) |
3. | \(\text{sin}\omega t+\text{cos}\omega t\) | 4. | \(\text{sin}(\omega t+\pi/4)\) |