premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

Which one of the following gives the value of the magnetic field according to Biot-Savart’s law?

1. \(\dfrac{{i} \Delta {l} \sin (\theta)}{{r}^2} \) 2. \(\dfrac{\mu_0}{4 \pi} \dfrac{i \Delta {l} \sin (\theta)}{r} \)
3. \(\dfrac{\mu_0}{4 \pi} \dfrac{{i} \Delta{l} \sin (\theta)}{{r}^2} \) 4. \(\dfrac{\mu_0}{4 \pi} {i} \Delta {l} \sin (\theta)\)
Subtopic:  Biot-Savart Law |
 90%
Level 1: 80%+
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

An element \(\Delta l=\Delta x \hat{i}\) is placed at the origin and carries a large current of \(I=10~\text A\) (as shown in the figure). What is the magnetic field on the \(y\text-\)axis at a distance of \(0.5~\text m?\) 
\((\text{Given}~\Delta x=1~\text{cm})\)

 1. \(6\times 10^{-8}~\text{T}\) 2. \(4\times 10^{-8}~\text{T}\)
3. \(5\times 10^{-8}~\text{T}\) 4. \(5.4\times 10^{-8}~\text{T}\)
Subtopic:  Biot-Savart Law |
 81%
Level 1: 80%+
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
A straight wire carrying a current of \(12~\text{A}\) is bent into a semi-circular arc of radius \(2.0~\text{cm}\) as shown in the figure. Considering the magnetic field \(B\) at the centre of the arc, what will be the magnetic field due to the straight segments?

1. \(0\) 2. \(1.2\times 10^{-4}~\text{T}\)
3. \(2.1\times 10^{-4}~\text{T}\) 4. None of these
Subtopic:  Biot-Savart Law |
 80%
Level 1: 80%+
Hints
Links

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The resistances of three parts of a circular loop are as shown in the figure. What will be the magnetic field at the centre of \(O\) 
(current enters at \(A\) and leaves at \(B\) and \(C\) as shown)?

          
1. \(\dfrac{\mu_{0} I}{6 a}\) 2. \(\dfrac{\mu_{0} I}{3 a}\)
3. \(\dfrac{2\mu_{0} I}{3 a}\) 4. \(0\)
Subtopic:  Magnetic Field due to various cases |
 82%
Level 1: 80%+
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

Which of the following graphs correctly represents the variation of magnetic field induction with distance due to a thin wire carrying current?

1.   2.
3. 4.
Subtopic:  Magnetic Field due to various cases |
 80%
Level 1: 80%+
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

What is the magnetic field at point \(O\) in the figure?

1. \(\dfrac{\mu_{0} I}{4 \pi r}\) 2. \(\dfrac{\mu_{0} I}{4 \pi r} + \dfrac{\mu_{0} I}{2 \pi r}\)
3. \(\dfrac{\mu_{0} I}{4 r} + \dfrac{\mu_{0} I}{4 \pi r}\) 4. \(\dfrac{\mu_{0} I}{4 r} - \dfrac{\mu_{0} I}{4 \pi r}\)
Subtopic:  Magnetic Field due to various cases |
 80%
Level 1: 80%+
Hints

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

Two identical long conducting wires \(({AOB})\) and \(({COD})\) are placed at a right angle to each other, with one above the other such that '\(O\)' is the common point for the two. The wires carry \(I_1\) and \(I_2\) currents, respectively. The point '\(P\)' is lying at a distance '\(d\)' from '\(O\)' along a direction perpendicular to the plane containing the wires. What will be the magnetic field at the point \(P?\)

1. \(\dfrac{\mu_0}{2\pi d}\left(\dfrac{I_1}{I_2}\right )\) 2. \(\dfrac{\mu_0}{2\pi d}\left[I_1+I_2\right ]\)
3. \(\dfrac{\mu_0}{2\pi d}\left[I^2_1+I^2_2\right ]\) 4. \(\dfrac{\mu_0}{2\pi d}\sqrt{\left[I^2_1+I^2_2\right ]}\)
Subtopic:  Magnetic Field due to various cases |
 77%
Level 2: 60%+
AIPMT - 2014
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
If the magnetic field at the centre of the circular coil is \(B_0,\) then what is the distance on its axis from the centre of the coil where  \(B_x=\frac{B_0}{8}?\)
(\(R\) = radius of the coil)
1. \(R \over 3\) 2. \(\sqrt{3}R\)
3. \(R \over \sqrt3\) 4. \(R \over 2\)
Subtopic:  Magnetic Field due to various cases |
 74%
Level 2: 60%+
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
A circular coil is in the \(y\text-z\) plane with its centre at the origin. The coil carries a constant current. Assuming the direction of the magnetic field at \(x= -25~\text{cm}\) to be positive, which of the following graphs shows the variation of the magnetic field along the \(x\text-\)axis?
1.   2.
3. 4.
Subtopic:  Magnetic Field due to various cases |
 72%
Level 2: 60%+
Hints
Links

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
A current loop consists of two identical semicircular parts each of radius \(R,\) one lying in the \(x\text-y\) plane, and the other in the \(x\text-z\) plane. If the current in the loop is \(i,\) what will be the resultant magnetic field due to the two semicircular parts at their common centre?
1. \( \dfrac{\mu_0 i}{2 \sqrt{2} R} \) 2. \( \dfrac{\mu_0 i}{2 R} \)
3. \( \dfrac{\mu_0 i}{4 R} \) 4. \( \dfrac{\mu_0 i}{\sqrt{2} R}\)
Subtopic:  Magnetic Field due to various cases |
 67%
Level 2: 60%+
NEET - 2010
Hints