premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The current in a wire varies with time according to the equation \(I=(4+2t),\) where \(I\) is in ampere and \(t\) is in seconds. The quantity of charge which has passed through a cross-section of the wire during the time \(t=2\) s to \(t=6\) s will be:

1. \(60\) C  2. \(24\) C
3. \(48\) 4. \(30\) C

Subtopic:  Current & Current Density |
 84%
Level 1: 80%+
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

A charged particle having drift velocity of \(7.5\times10^{-4}~\text{ms}^{-1}\) in an electric field of \(3\times10^{-10}~\text{Vm}^{-1},\) has mobility of: 
1. \(2.5\times 10^{6}~\text{m}^2\text{V}^{-1}\text{s}^{-1}\)
2. \(2.5\times 10^{-6}~\text{m}^2\text{V}^{-1}\text{s}^{-1}\)
3. \(2.25\times 10^{-15}~\text{m}^2\text{V}^{-1}\text{s}^{-1}\)
4. \(2.25\times 10^{15}~\text{m}^2\text{V}^{-1}\text{s}^{-1}\)

Subtopic:  Current & Current Density |
 83%
Level 1: 80%+
NEET - 2020
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

Drift velocity \(v_d\) varies with the intensity of the electric field as per the relation:
1. \(v_{d} \propto E\)
2. \(v_{d} \propto \frac{1}{E}\)
3. \(v_{d}= \text{constant}\)
4. \(v_{d} \propto E^2\)

Subtopic:  Current & Current Density |
 79%
Level 2: 60%+
PMT - 1981
Hints
Links

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The resistance of a wire is \(R\) ohm. If it is melted and stretched to \(n\) times its original length, its new resistance will be:

1. \(nR\) 2. \(\frac{R}{n}\)
3. \(n^2R\) 4. \(\frac{R}{n^2}\)
Subtopic:  Derivation of Ohm's Law |
 83%
Level 1: 80%+
NEET - 2017
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

Two solid conductors are made up of the same material and have the same length and the same resistance. One of them has a circular cross-section of area \(  𝐴 _1\) and the other one has a square cross-section of area \(A_2.\) The ratio of \(𝐴 _1 / 𝐴 _2  \) is:

1. \(1.5\) 2. \(1\)
3. \(0.8\) 4. \(2\)
Subtopic:  Derivation of Ohm's Law |
 83%
Level 1: 80%+
NEET - 2020
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The dependence of resistivity \((\rho)\) on the temperature \((T)\) of a semiconductor is, roughly, represented by:

1. 2.
3. 4.
Subtopic:  Derivation of Ohm's Law |
 65%
Level 2: 60%+
Hints
Links

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The equivalent resistance between \(A\) and \(B\) for the mesh shown in the figure is:

      

1. \(7.2~\Omega\)  2. \(16~\Omega\) 
3. \(30~\Omega\)  4. \(4.8~\Omega\) 
Subtopic:  Combination of Resistors |
 88%
Level 1: 80%+
NEET - 2020
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

A potential divider is used to give outputs of \(2~\text{V}\) and \(3~\text{V}\) from a \(5~\text{V}\) source, as shown in the figure.

Which combination of resistances, from the ones given below, \(R_1, R_2, ~\text{and}~R_3\) give the correct voltages?
1. \({R}_1=1~\text{k} \Omega, {R}_2=1 ~\text{k} \Omega, {R}_3=2 ~\text{k} \Omega\)
2. \({R}_1=2 ~\text{k} \Omega, {R}_2=1~\text{k} \Omega, {R}_3=2~\text{k} \Omega\)
3. \({R}_1=1 ~\text{k} \Omega, {R}_2=2~ \text{k} \Omega, {R}_3=2~ \text{k} \Omega\)
4. \({R}_1=3~\text{k} \Omega, {R}_2=2~\text{k} \Omega, {R}_3=2~ \text{k} \Omega\)
Subtopic:  Combination of Resistors |
 80%
Level 1: 80%+
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

In the circuit shown in the figure, the effective resistance between \(A\) and \(B\) is:

                             

1. \(2~\Omega\)
2. \(4~\Omega\)
3. \(6~\Omega\)
4. \(8~\Omega\)

Subtopic:  Combination of Resistors |
 80%
Level 1: 80%+
Hints

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The effective resistance between points \(P\) and \(Q\) of the electrical circuit shown in the figure is:

1. \(\frac{2 R r}{\left(R + r \right)}\) 2. \(\frac{8R\left(R + r\right)}{\left( 3 R + r\right)}\)
3. \(2r+4R\) 4. \(\frac{5R}{2}+2r\)
Subtopic:  Combination of Resistors |
 77%
Level 2: 60%+
Hints
Links