If θ is the angle between vectors AandB, then which of the following is the unit vector perpendicular to AandB?

1. A^×B^ABsinθ

2. A×BABcosθ

3. A×BABsinθ

4. A×BAB

Subtopic:  Vector Product |
 63%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

Which of the following option is not true, if A=3i^+4j^ and B=6i^+8j^, where \(\mathrm{A}\) and \(\mathrm{B}\) are the magnitudes of AandB?
1. A×B=0

2. AB=12

3. A·B=48

4. \(\mathrm{A}=5\)

Subtopic:  Vector Product |
 71%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

If A+B is perpendicular to A-B  , then which of the following statement is correct?

1. A=B

2. AB

3. A·B=zero

4. A+B·A-B0

Subtopic:  Scalar Product |
 57%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

The angle between the two vectors \(\left(- 2 \hat{i} +3 \hat{j} + \hat{k}\right)\) and \(\left(\hat{i} + 2 \hat{j} - 4 \hat{k}\right)\) is:
1. \(0^{\circ}\)

2. \(90^{\circ}\)

3. \(180^{\circ}\)

4. \(45^{\circ}\)

Subtopic:  Scalar Product |
 81%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

If a unit vector \(\hat j\) is rotated through an angle of \(45^{\circ}\) anticlockwise, then the new vector will be:
1. \(\sqrt{2}\hat i + \sqrt{2}\hat j\)
2. \(\hat i + \hat j\)
3. \(\frac{1}{\sqrt{2}}\hat i + \frac{1}{\sqrt{2}}\hat j\)
4. \(-\frac{1}{\sqrt{2}}\hat i + \frac{1}{\sqrt{2}}\hat j\)

Subtopic:  Resolution of Vectors |
 57%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

If a=2i^+j^ and b=3i^+2j^, then a×b=? 

1. 1 2.  65
3. 8 4. 4
Subtopic:  Vector Product |
 74%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

\(\overrightarrow A\) and \(\overrightarrow {B}\) are two vectors given by \(\overrightarrow {A}= 2\hat i + 3\hat j\) and \(\overrightarrow {B}= \hat i + \hat j\). The component of \(\overrightarrow A\) parallel to \(\overrightarrow B\) is:
1. \(\frac{(2\hat i -\hat j)}{2}\)
2. \(\frac{5}{2}(\hat i - \hat j)\)
3. \(\frac{5}{2}(\hat i + \hat j)\)
4. \(\frac{(3\hat i -2\hat j)}{2}\)

Subtopic:  Scalar Product |
 67%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

If a vector is inclined at angles \(\alpha ,\beta ,~\text{and}~\gamma\)with \(x\), \(y\), and \(z\)-axis respectively, then the value of \(\sin^{2}\alpha+\sin^{2}\beta+ \sin^{2}\gamma\)
is equal to:

1. \(0\)

2. \(1\)

3. \(2\)

4. \(\frac{1}{2}\)

Subtopic:  Trigonometry |
 55%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links

A force of \(20\) N acts on a particle along a direction, making an angle of \(60^\circ\) with the vertical. The component of the force along the vertical direction will be:

1. \(2\) N 2. \(5\) N
3. \(10\) N 4. \(20\) N
Subtopic:  Resolution of Vectors |
 88%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

If \(\overrightarrow {A}\) and \(\overrightarrow{B}\) are two vectors inclined to each other at an angle \(\theta,\) then the component of \(\overrightarrow {A}\) perpendicular to \(\overrightarrow {B}\) and lying in the plane containing \(\overrightarrow {A}\) and \(\overrightarrow {B}\) will be:
1. \(\frac{\overrightarrow {A} \overrightarrow{.B}}{B^{2}} \overrightarrow{B}\)
2. \(\overrightarrow{A}   -   \frac{\overrightarrow{A} \overrightarrow{.B}}{B^{2}} \overrightarrow{B}\)
3. \(\overrightarrow{A} -\overrightarrow{B}\)
4. \(\overrightarrow{A} + \overrightarrow{B}\)

Subtopic:  Scalar Product |
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital