Match Column - I and Column - II and choose the correct match from the given choices.
 

Column - I Column - II
(A) root mean square speed of gas molecules (P) \(\frac13nm\bar v^2\)
(B) the pressure exerted by an ideal gas (Q) \( \sqrt{\frac{3 R T}{M}} \)
(C) the average kinetic energy of a molecule (R) \( \frac{5}{2} R T \)
(D) the total internal energy of 1 mole of a diatomic gas (S) \(\frac32k_BT\)
 
(A) (B) (C) (D)
1. (Q) (P) (S) (R)
2. (R) (Q) (P) (S)
3. (R) (P) (S) (Q)
4. (Q) (R) (S) (P)

Subtopic:  Kinetic Energy of an Ideal Gas |
 76%
From NCERT
NEET - 2021
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A cylinder of fixed capacity \(44.8\) litres contains helium gas at standard temperature and pressure. What is the amount of heat needed to raise the temperature of the gas in the cylinder by \(15.0^\circ~\mathrm{C}?\) (\(R=8.31\) J mol–1 K–1)

1. \(379\) J 2. \(357\) J
3. \(457\) J 4. \(374\) J

Subtopic:  Specific Heat |
 51%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Which of the following parameters is the same for molecules of all gases at a given temperature?

1. mass 2. speed
3. momentum 4. kinetic energy

Subtopic:  Kinetic Energy of an Ideal Gas |
 70%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

Suppose a container is evacuated to leave just one molecule of a gas in it. Let \(v_a\) and \(v_{rms}\) represent the average speed and the rms speed of the gas.
 
1. \(v_a>v_{rms}\)
2. \(v_a<v_{rms}\)
3. \(v_a=v_{rms}\)
4. \(v_{rms}\) is undefined
Subtopic:  Types of Velocities |
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The quantity  \( {pV} \over kT\) represents:
 
1. mass of the gas
2. kinetic energy of the gas
3. number of moles of the gas
4. number of molecules in the gas

Subtopic:  Types of Velocities |
 68%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The process on an ideal gas as shown in the figure given below is:
             

1. isothermal
2. isobaric
3. isochoric
4. none of these

Subtopic:  Ideal Gas Equation |
 84%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

If \(C_p\) and \(C_v\) denote the specific heats (per unit mass) of an ideal gas of molecular weight \(M\) (where \(R\) is the molar gas constant), the correct relation is:
1. \(C_p-C_v=R\)
2. \(C_p-C_v=\frac{R}{M}\)
3. \(C_p-C_v=MR\)
4. \(C_p-C_v=\frac{R}{M^2}\)

Subtopic:  Specific Heat |
 64%
From NCERT
AIPMT - 2010
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Hydrogen gas is contained in a vessel and the RMS speed of the gas molecules is \(v\). The gas is heated isobarically so that its volume doubles, then it is compressed isothermally so that it returns to the same volume. The final RMS speed of the molecules will be:

1. 2\(v\) 2. \(v\)/2
3. \(v\)\(\sqrt2\) 4. \(v\)/\(\sqrt2\)
Subtopic:  Types of Velocities |
 72%
From NCERT
Please attempt this question first.
Hints
Please attempt this question first.

The pressure exerted by a gas enclosed within a room is due to:

1. collisions of the gas molecules with the walls of the room.
2. repulsive force between molecules of the gas.
3. weight of the molecules of the gas.
4. angular momentum of the molecules.
Subtopic:  Kinetic Energy of an Ideal Gas |
 90%
From NCERT
Please attempt this question first.
Hints
Please attempt this question first.

advertisementadvertisement

An ideal gas equation can be written as P=ρRTM0 where ρ and M0 are respectively:

1. mass density, the mass of the gas 
2. number density, molar mass 
3. mass density, molar mass 
4. number density, the mass of the gas 
Subtopic:  Ideal Gas Equation |
 78%
From NCERT
NEET - 2020
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh