The vector sum of two vectors $\stackrel{\to }{\mathrm{A}}$ and $\stackrel{\to }{\mathrm{B}}$ is maximum, then the angle $\mathrm{\theta }$ between two vectors is -

(A)  $0°$

(B)  $30°$

(C)  $45°$

(D)  $60°$

Concept Questions :-

Resultant of Vectors
High Yielding Test Series + Question Bank - NEET 2020

Difficulty Level:

Given: $\stackrel{\to }{\mathrm{C}}=\stackrel{\to }{\mathrm{A}}+\stackrel{\to }{\mathrm{B}}$. Also, the magnitude of  and $\stackrel{\to }{\mathrm{C}}$ are 12, 5 and 13 units respectively. The angle between $\stackrel{\to }{\mathrm{A}}$ and $\stackrel{\to }{\mathrm{B}}$ is

(A)  $0°$

(B)  $\frac{\mathrm{\pi }}{4}$

(C)  $\frac{\mathrm{\pi }}{2}$

(D)  $\mathrm{\pi }$

Concept Questions :-

Resultant of Vectors

Difficulty Level:

If $\stackrel{\to }{\mathrm{P}}+\stackrel{\to }{\mathrm{Q}}=\stackrel{\to }{\mathrm{P}}-\stackrel{\to }{\mathrm{Q}}$ and $\mathrm{\theta }$ is the angle between $\stackrel{\to }{\mathrm{P}}$ and $\stackrel{\to }{\mathrm{Q}}$, then

(A)  $\mathrm{\theta }=0°$

(B)  $\mathrm{\theta }=90°$

(C)  $\mathrm{P}=0$

(D)  $\mathrm{Q}=0$

Concept Questions :-

Resultant of Vectors
High Yielding Test Series + Question Bank - NEET 2020

Difficulty Level:

What is the torque of a force  Newton acting at a point  metre about the origin?

(A)

(B)

(C)

(D)

Concept Questions :-

Vector Product
High Yielding Test Series + Question Bank - NEET 2020

Difficulty Level:

Three non zero vectors  satisfy the relation . Then $\stackrel{\to }{\mathrm{A}}$ can be parallel to:

(A)  $\stackrel{\to }{\mathrm{B}}$

(B)  $\stackrel{\to }{\mathrm{C}}$

(C)  $\stackrel{\to }{\mathrm{B}}·\stackrel{\to }{\mathrm{C}}$

(D)  $\stackrel{\to }{\mathrm{B}}×\stackrel{\to }{\mathrm{C}}$

Concept Questions :-

Scalar Product

Difficulty Level:

The scalar product of two vectors is 8 and the magnitude of vector product is $8\sqrt{3}$. The angle between them is:

(A)  $30°$

(B)  $60°$

(C)  $120°$

(D)  $150°$

Concept Questions :-

Vector Product
High Yielding Test Series + Question Bank - NEET 2020

Difficulty Level:

Given: $\stackrel{\to }{\mathrm{a}}+\stackrel{\to }{\mathrm{b}}+\stackrel{\to }{\mathrm{c}}=0$. Out of the three vectors  and $\stackrel{\to }{\mathrm{c}}$ two are equal in magnitude. The magnitude of the third vector is $\sqrt{2}$ times that of either of the two having equal magnitude. The angles between the vectors are:

(A)  90$°$, 135$°$, 135$°$

(B)  30$°$, 60$°$, 90$°$

(C)  45$°$, 45$°$, 90$°$

(D)  45$°$, 60$°$, 90$°$

Concept Questions :-

Resultant of Vectors
High Yielding Test Series + Question Bank - NEET 2020

Difficulty Level:

Vector $\stackrel{\to }{\mathrm{A}}$ is of length 2 cm and is 60$°$ above the x-axis in the first quadrant. Vector $\stackrel{\to }{\mathrm{B}}$ is of length 2 cm and 60$°$ below the x-axis in the fourth quadrant. The sum $\stackrel{\to }{\mathrm{A}}$+$\stackrel{\to }{\mathrm{B}}$ is a vector of magnitude -

(A)  2 along + y-axis

(B)  2 along + x-axis

(C)  1 along - x-axis

(D)  2 along - x-axis

Concept Questions :-

Resultant of Vectors
High Yielding Test Series + Question Bank - NEET 2020

Difficulty Level:

Six forces, 9.81 N each, acting at a point are coplanar. If the angle between neighboring forces are equal, then the resultant is

(A)  0 N

(B)  9.81 N

(C)  2$×$9.81 N

(D)  3$×$9.81 N

Concept Questions :-

Resultant of Vectors
High Yielding Test Series + Question Bank - NEET 2020

Difficulty Level:

Temperature of a body varies with time as , where ${\mathrm{T}}_{0}$ is the temperature in Kelvin at , then the rate of change of temperature $\left(\frac{\mathrm{dT}}{\mathrm{dt}}\right)$ at  is-

1.

2.

3.

4.

Concept Questions :-

Differentiation